


# FORWARD LOOKING STATEMENTS

This presentation contains "forward-looking statements" within the meaning of Canadian securities legislation. Such forward-looking statements concern the Company's strategic plans, completion and exercise of the Tonopah option agreement, timing and expectations for the Company's exploration and drilling programs, estimates of mineralization from historic drilling, geological information projected from historic sampling results and the potential quantities and grades of the target zones. Such forward-looking statements or information are based on a number of assumptions, which may prove to be incorrect. Assumptions have been made regarding, among other things: conditions in general economic and financial markets; accuracy of historic assay results; geological interpretations from drilling results, timing and amount of capital expenditures; performance of available laboratory and other related services; future operating costs; and the historical basis for current estimates of potential quantities and grades of target zones. The actual results could differ materially from those anticipated in these forward-looking statements as a result of the risk factors including: the ability of the Company to complete the Tonopah lease option, the timing and content of work programs; results of exploration activities and development of mineral properties; the interpretation and uncertainties of historic mineral estimates, and other geological data; receipt, maintenance and security of permits and mineral property titles; environmental and other regulatory risks; project costs overruns or unanticipated costs and expenses; availability of funds; failure to delineate potential quantities and grades of the target zones based on historical data, and general market and industry conditions. Forward-looking statements are based on the expectations and opinions of the Company's management on the date the statements are made. The assumptions used in the preparation of such statements, although considered reasonable at the time of prepa

William C. Howald, Certified Professional Geologist, has reviewed and approved the contents of this Presentation.





| Capitalization and Balance S              | heet (C\$)      |
|-------------------------------------------|-----------------|
| Shares Issued                             | 178,021,729     |
| Fully Diluted                             | 223,331,039     |
| Market Cap (@ C\$0.48 as of Aug 31, 2022) | C\$85.0M        |
| Recent Financing : Closed August 30       | \$6.28M         |
| 52 Week High/Low                          | C\$1.30/C\$0.42 |

BLACKROCKSILVER.COMI TSX-V: BRC | OTC: BKRRF | FSE: AHZ0

# TSX-V: BRC | OTC: BKRRF | FSE: AHZO



#### **Analyst Coverage**

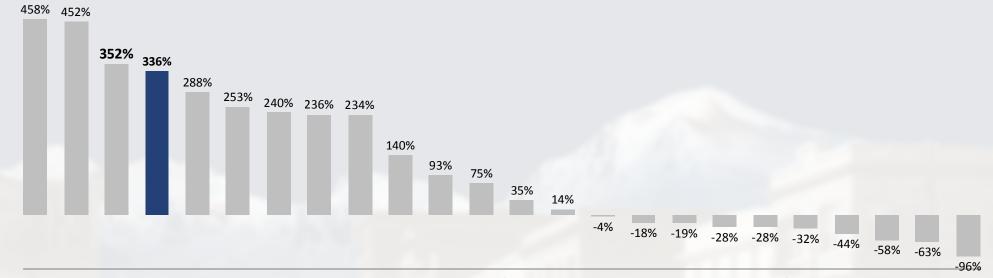




PI FINANCIAL

Stuart McDougall

**Taylor Combaluzier** 


Phil Ker

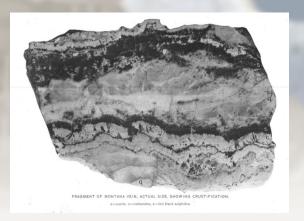


SEPTEMBER 2022 I

# CREATING VALUE THROUGH DISCOVERY & DE-RISKING

Share performance relative to silver explorers & developers since optioning Tonopah West (April 1, 2020 to Aug 31, 2022)




AbraSilverPrime VizslaBlackro@kldenlfagestigatoxpoll6ilver Tiggiscov@oyly Vardenroud SSV Aftermatiliver OsieverCre@R SilverEquusAlmadblew Pa6ificer Vipear Criber ElephantegraAurcana



# TONOPAH SILVER DISTRICT

The Queen of the Silver Camps

- One of the largest historic silver districts in North America, producing 174 Mozs Ag & 1.8 Mozs Au from 7.5m tonnes
- Mined from underground from 1900 to 1930, with peak years producing up to 14,000,000oz/ year AgEq; Victor vein was 24m thick where production ceased
- Newly consolidated land package consists of 100 patented & 279 unpatented mining claims covering 25.5sq km (6,300 acres); largest claim package in Tonopah silver district
- First group to conduct exploration targeting historic workings; multiple historic mines on property



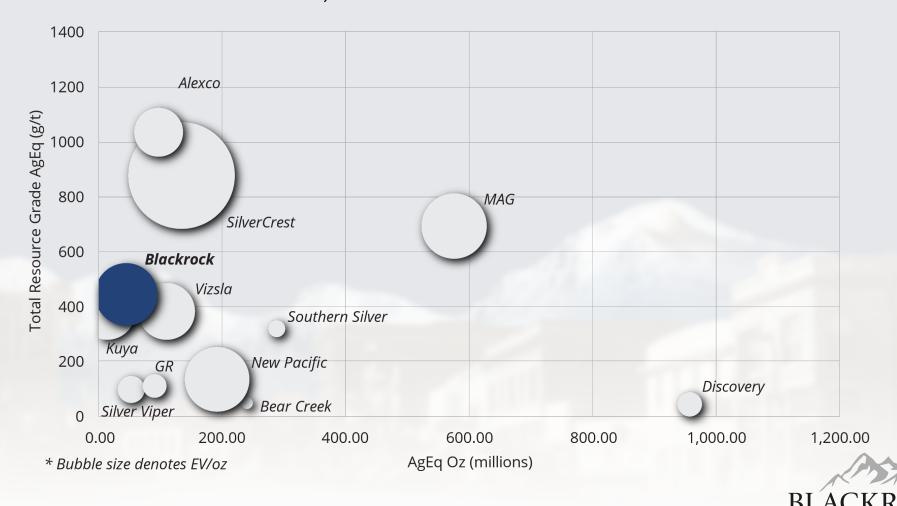
All historic production information from Nevada Bureau of Mines & Geology, Bulletin 51 and Bulletin 92. US short tons have been converted to metric tonnes by multiplying short tons by 0.9072 AgEq = (historic gold production times historic gold price) divided by historic silver price) plus historic silver production

LONE TREE  $^{\overleftarrow{\mathcal{N}}}$ GOLD QUARRY FORTITUDE X WILDCAT FORTIT FLORIDA CANYON FIRE CREEK DARK STAR MCCOY X PIPELINE XX CORTEZ PINION PONY CREEK Interstate 80 GOLDBAR Reno COMSTOCK Carson City \*ROUND MOUNTAIN TONOPAH WEST GOLDFIELD **NORTH BULLFROG** MOTHER LODE **★** STIRLING BLACKROCK Las Veges TEMBER 2022 | 5

BLACKROCKSILVER.COMI TSX-V: BRC | OTC: BKRRF | FSE: AHZO

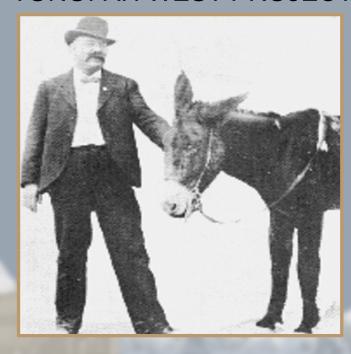
#### STOPE OPTIMIZED MAIDEN RESOURCE ESTIMATE

| A ** 0 0 | Cut-off US\$/ | Block<br>Model       | AgEq           | Tannaa    | Block Diluted<br>Grades |             |             | Ounces of  | Ounces of | Ounce of                            | Classification/2\             |  |
|----------|---------------|----------------------|----------------|-----------|-------------------------|-------------|-------------|------------|-----------|-------------------------------------|-------------------------------|--|
| Area     |               | Value US\$/<br>tonne | cutoff g/<br>t | Tonnes    | Silver<br>g/t           | Gold<br>g/t | AgEq<br>g/t | Silver     | Gold      | Silver<br>Equivalent <sup>(2)</sup> | Classification <sup>(3)</sup> |  |
| DPB      | 118           | 230                  | 211            | 1,281,000 | 198                     | 2.3         | 415         | 8,150,000  | 94,000    | 17,100,000                          | Inferred                      |  |
| Victor   | 107           | 251                  | 190            | 1,694,000 | 216                     | 2.7         | 469         | 11,752,000 | 144,000   | 25,514,000                          | inferred                      |  |
| TOTAL    | 112           | 242                  | 200            | 2,975,000 | 208                     | 2.5         | 446         | 19,902,000 | 238,000   | 42,614,000                          | Inferred                      |  |


| Parameters<br>Used        | Longhole USD | C&F USD | Units          |  |  |
|---------------------------|--------------|---------|----------------|--|--|
| UG Mining                 | 70           | 100     | \$/t Mined     |  |  |
| Processing                | 24           | 24      | \$/t Processed |  |  |
| G&A                       | 13           | 13      | \$/t Processed |  |  |
| Silver Price              | 20           | 20      | \$/ounce       |  |  |
| Gold Price                | 1750         | 1750    | \$/ounce       |  |  |
| Total                     | 107          | 137     | \$/t Processed |  |  |
| Effective AgEq<br>Cut off | 190          | 244     | g/t Ag         |  |  |

1-US\$ cutoff is weight average of longhole stope material at \$107/tonne and cut-and-fill material at \$137/tonne

2-Silver Equivalent grade is based on silver and gold prices of US\$20/ounce and US\$1750/ounce, respectively, and recoveries for silver and gold of 87% and 95%, respectively.

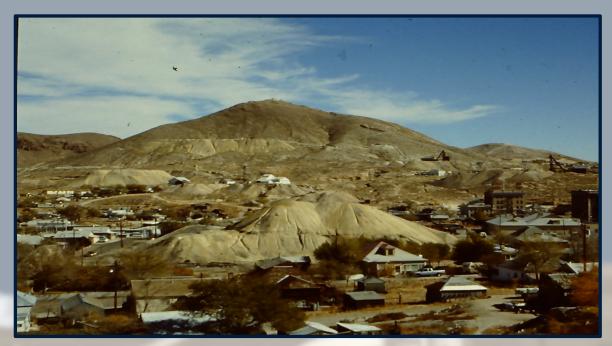

3-Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no certainty that all or any part of the mineral resources estimated will be converted into mineral reserves. The quantity and grade of reported Inferred mineral resources in this estimation are uncertain in nature and there has been insufficient exploration to define these Inferred mineral resources as Indicated mineral resources. It is uncertain if further exploration will result in upgrading them to the Indicated mineral resources category.

# SILVER PROJECT GRADE, RESOURCE & EV/oz COMPARISON



SEPTEMBER 2022 I

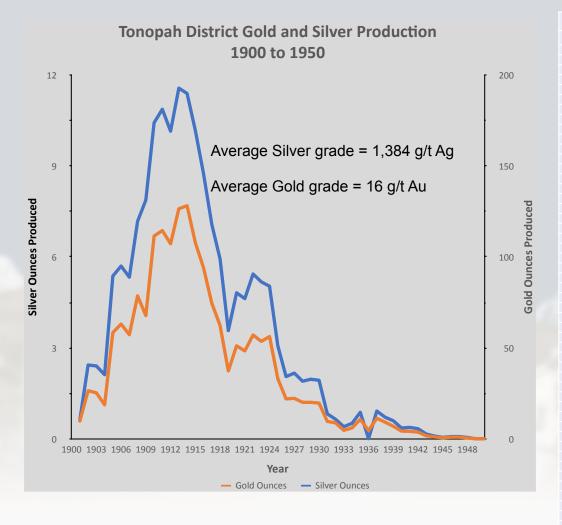
# TONOPAH WEST PROJECT




Ranch hand and part-time prospector Jim Butler and his trusty mule stumble on silver-rich veins near Tonopah Springs in the spring of 1900

\*All historic production information from Nevada Bureau of Mines & Geology, Bulletin 51 and Bulletin 92. US short tons have been converted to metric tonnes by multiplying short tons by 0.9072 AgEq = (historic gold production times historic gold price)




diblackrockshiver: Comi TSX-V: BRC | OTC: BKRRF | FSE: AHZO



- Tonopah: A high-grade low sulfidation epithermal district
- Production: ~1.86 Moz Au, 174 Moz Ag from 7.45m tonnes
- Silver Primary District: 100 to 1 Silver/Gold ratio
- Tonopah West: 1st ever consolidated ownership
- High Grade: 50 years of historic production averaged 1,384 g/t silver and 16 g/t gold
- Tailings: Tonopah Extension Mill Tailings and mine dumps

# TONOPAH DISTRICT GOLD AND SILVER PRODUCTION

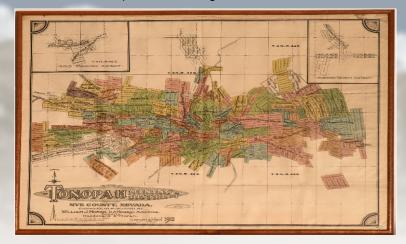
All historic production information from Nevada Bureau of Mines & Geology, Bulletin 51 and Bulletin 92. US short tons have been converted to metric tonnes by multiplying short tons by 0.9072 AuEq = (historic silver production times historic silver price) divided by historic gold price) plus historic gold production



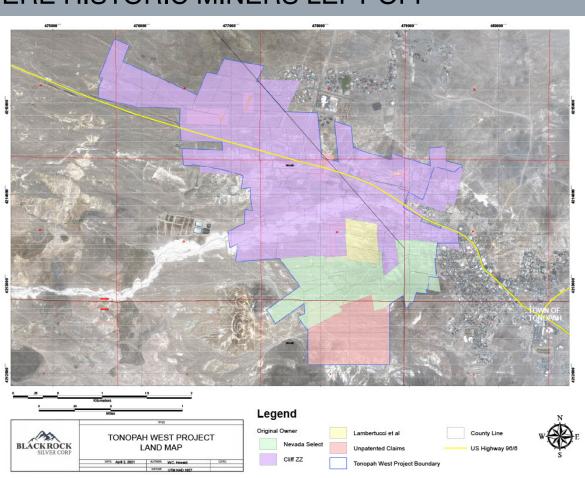
| Silver Ounces      | Gold Ounces | Tonnes    | Tons    | Year |
|--------------------|-------------|-----------|---------|------|
|                    |             | 0.9       | 1       | 1900 |
| 623,516            | 9,774       | 2,298.8   | 2,534   | 1901 |
| 2,434,453          | 26,463      | 10,213.3  | 11,258  | 1902 |
| 2,404,180          | 25,298      | 8,214.7   | 9,055   | 1903 |
| 2,115,191          | 18,703      | 20,596.2  | 22,703  | 1904 |
| 5,369,439          | 58,357      | 83,145.8  | 91,651  | 1905 |
| 5,697,928          | 63,114      | 96,608.6  | 106,491 | 1906 |
| 5,330,398          | 57,250      | 194,692.4 | 214,608 | 1907 |
| 7,172,386          | 78,585      | 247,825.3 | 273,176 | 1908 |
| 7,872,967          | 67,742      | 252,875.6 | 278,743 | 1909 |
| 10,422,869         | 111,442     | 331,254.1 | 365,139 | 1910 |
| 10,868,268         | 114,479     | 366,849.0 | 404,375 | 1911 |
| 10,144,987         | 107,219     | 434,930.7 | 479,421 | 1912 |
| 11,563,437         | 126,445     | 521,224.5 | 574,542 | 1913 |
| 11,388,452         | 128,117     | 481,975.4 | 531,278 | 1914 |
| 10,171,374         | 107,836     | 468,420.9 | 516,337 | 1915 |
| 8,734,726          | 93,925      | 412,903.0 | 455,140 | 1916 |
| 7,068,737          | 74,481      | 426,494.7 | 470,122 | 1917 |
| 5,929,920          | 62,300      | 454,679.6 | 501,190 | 1918 |
| 3,568,875          | 37,339      | 243,726.5 | 268,658 | 1919 |
| 4,816,055          | 51,136      | 351,530.0 | 387,489 | 1920 |
| 4,623,901          | 48,335      | 333,767.0 | 367,909 | 1921 |
| 5,436,080          | 57,053      | 428,983.1 | 472,865 | 1922 |
| 5,176,306          | 53,571      | 337,429.4 | 371,946 | 1923 |
| 5,032,043          | 56,216      | 259,193.4 | 285,707 | 1924 |
| 3,070,409          | 33,073      | 179,089.4 | 197,409 | 1925 |
| 2,052,956          | 21,967      | 115,443.0 | 127,252 | 1926 |
| 2,167,694          | 22,256      | 114,116.7 | 125,790 | 1927 |
| 1,900,315          | 20,079      | 93,540.5  | 103,109 | 1928 |
| 1,965,595          | 20,059      | 110,176.7 | 121,447 | 1929 |
| 1,931,194          | 19,656      | 103,873.5 | 114,499 | 1930 |
| 823,872            | 9,583       | 14,999.6  | 16,534  | 1931 |
| 646,687            | 8,791       | 9,619.9   | 10,604  | 1932 |
| 400,379            | 4,679       | 4,341.9   | 4,786   | 1933 |
| 513,032            | 6,024       | 10,786.6  | 11,890  | 1934 |
| 874,860            | 10,708      | 178,455.3 | 196,710 | 1935 |
| 5,388              | 4,586       | 35,731.9  | 39,387  | 1936 |
| 916,513            | 11,289      | 107,418.8 | 118,407 | 1937 |
| 715,266            | 9,181       | 17,779.3  | 19,598  | 1938 |
| 596,173            | 6,925       | 17,025.4  | 18,767  | 1939 |
| 358,018            | 4,252       | 10,776.6  | 11,879  | 1940 |
| 377,534            | 4,121       | 10,199.6  | 11,243  | 1941 |
| 334,712            | 3,710       | 61,830.2  | 68,155  | 1942 |
| 159,141            | 1,709       | 4,647.6   | 5,123   | 1943 |
| 91,215             | 1,029       | 3,738.6   | 4,121   | 1944 |
| 48,434             | 596         | 1,673.8   | 1,845   | 1945 |
| 75,840             | 911         | 2,057.5   | 2,268   | 1946 |
| 76,091             | 941         | 1,808.0   | 1,993   | 1947 |
| 45,938             | 468         | 1,563.1   | 1,723   | 1948 |
| 3,817              | 38          | 82.6      | 91      | 1949 |
| SEPTEMBER 2022 336 | 24          | 58.1      | 64      | 1950 |

BLACKROCKSILVER.COMI TSX-V: BRC | OTC: BKRRF | FSE: AHZ0

# TONOPAH WEST: PICKING UP WHERE HISTORIC MINERS LEFT OFF

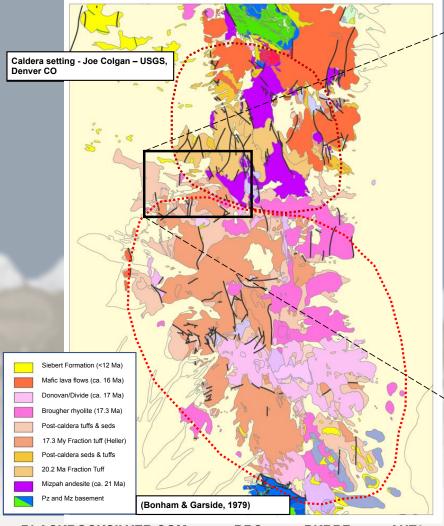

Amalgamation of West End Mining Company and Tonopah Extension Mining Company. This property represents **the 3**<sup>rd</sup> **largest producer** in the district.

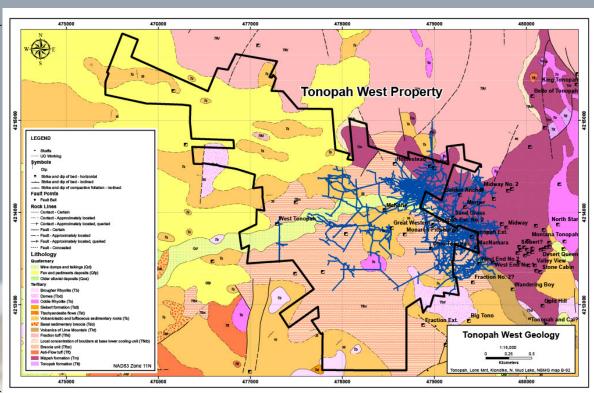
Purple - Tonopah Extension Mining Company land (in purple) has never been worked since 1928. Held by private individual until 2017. One hole drilled by Chevron in 1985.


Green - West End Mining Company explored by Howard Hughes, Houston Oil and Minerals, Eastfields. Discovery of the Three Hills deposit in 1996.

Yellow - Acquired from Lambertucci Roma of Nevada

Pink - Staked unpatented mining claims





Tonopah Silver District in 1912- BRC now controls western half **BLACKROCKSILVER.COM**I TSX-V: **BRC** I OTC: **BKRRF** I FSE: **AHZ** 



100 patented mining claims and 19 unpatented mining claims

# TONOPAH DISTRICT & TONOPAH WEST GEOLOGY MAP



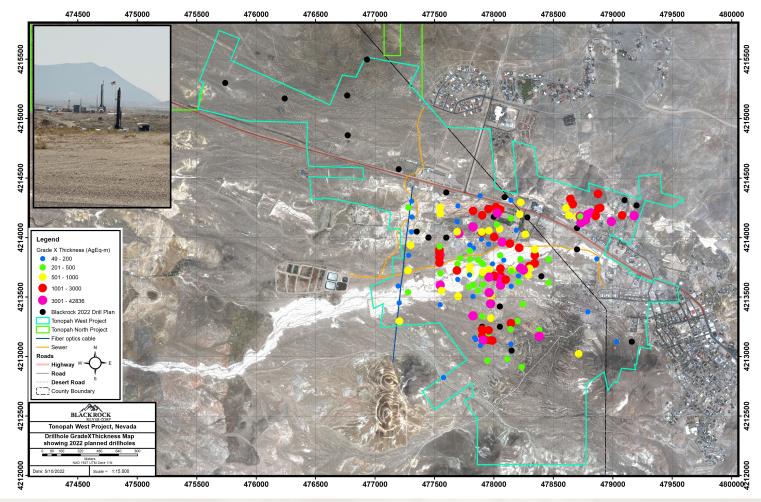


### **Underground workings**

- 55 Km (34 mi)
- 4 main levels 800, 1200, 1540 & 1880
- No stoping below 1540 level in DPB
- Mining stopped because of technical issues

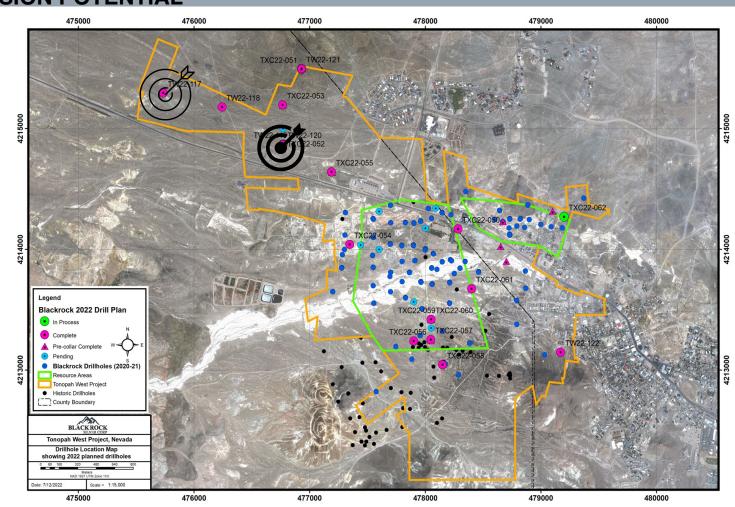
# HIGH GRADES; YEAR ROUND DRILLING

With over 140,000m of drilling completed since June 2020,
Tonopah West is the most active silver exploration project in North America


Significant intercepts range from 1 to 29 metres in thickness, with grades up to 5,080 g/t AgEq (up to 26 g/t gold, 2,994 g/t silver)

10 veins now established ranging from 425m up to 2.5km in strike

Big ROI via drill-bit: All-in discovery costs (exploration, project holding/option costs, G&A) of \$0.62/ounce AgEq


25,000 metre resource expansion and step-out program underway





#### **CLEAR RESOURCE EXPANSION POTENTIAL**

- Step-out drilling successfully intersected Denver vein 1 kilometre NW of the DPB resource area, doubling the strike potential of the mineralized vein system
- Core hole TXC22-052 (bold bullseye) cut 4.6 metres of the Denver vein grading 211 g/t AgEq, including a 0.7metre zone grading 702 g/t AgEq
- Mineralized vein has been tracked to NW edge of property, a further 1 kilometre beyond core hole TXC22-052 via RC drilling and a core stepout is being targeted
- In-fill drilling has encountered quartz-vein stockwork and breccia zones that are within 200 metres of the surface on the southern edge of the DPB resource.

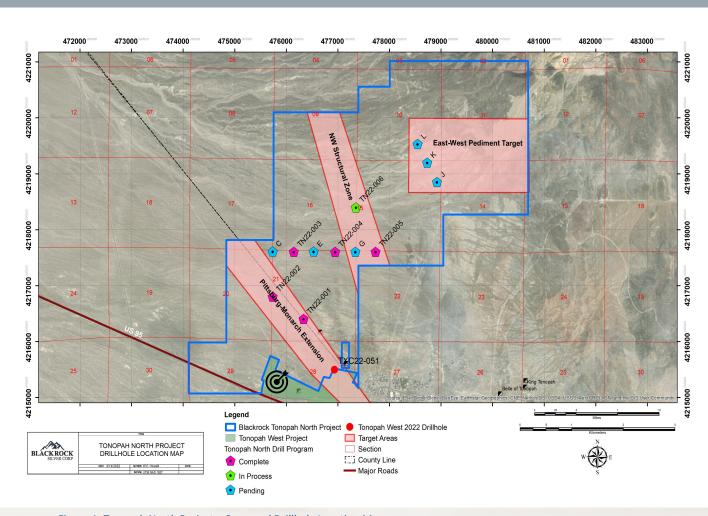


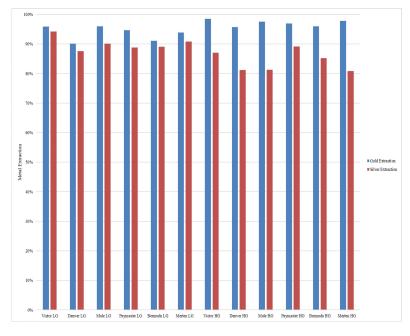
AgEq=AG:AU-100:1

#### **TONOPAH NORTH**

### **District Scale Blue Sky Potential**

- Large land package consists of 260 unpatented mining claims covering 20 sq km adjacent to Tonopah West vein system.
- A total of 10,000 metres of drilling is now underway in twelve RC drillholes
- DPB vein system tracked to Tonopah West- Tonopah North property boundary and remains open to NW
- Multiple high-priority silver-gold targets identified, including the extension of the Pittsburg-Monarch Fault System, one of the most significant structures of the Tonopah silver district;
- Lithium potential identified





Figure 1: Tonopah North Project – Proposed Drillhole Location Map

# **WORLD CLASS RECOVERIES**

Tonopah West Project - Metallurgical Test Work

Page 1-7

Figure 1-1.
Tonopah West Project
Gold and Silver Extraction



Kappes, Cassiday & Associates





#### 2022: Initial Met Test Work

- Appears amenable to standard cyanidation processing with average recoveries of **95% Gold and 87% Silver**;
- Gold recoveries range between 90% to 98% and Silver recoveries between 81% and 94%;
- The Merten vein returned an average Gold recovery of 96% and a Silver recovery of 90%; the high-grade Bermuda vein yielded average recoveries of 93.5% for Gold and 91% for Silver\*

\*See news release dated January 6, 2022

# Infrastructure, Electricity, Casinos...





#### WHY BRC?

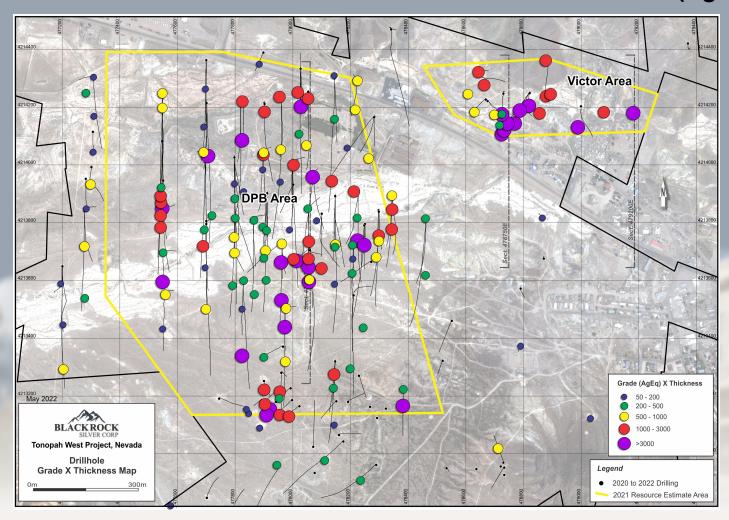
## **Creating Value Through Discovery:**

## High-Grade Gold & Silver in the Heart of Nevada

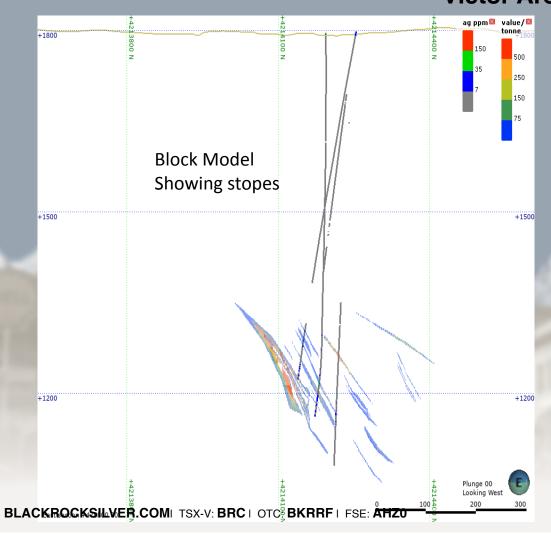
#### **Tonopah West & Tonopah North**

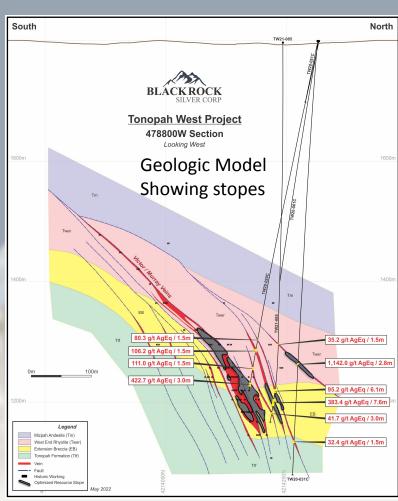
- Newly consolidated land package consists of 100 patented & 279 unpatented mining claims covering 25.5sq km (6,300 acres) in **one of largest known high-grade silver districts in North America**.
- \*50-year historic production profile that averaged 1,384 g/t Ag & 16 g/t Au, and up to 14,000,000 ounces/year AgEq
- Stope optimized maiden resource estimate of 2.975m tonnes grading 446 g/t AgEq for 42.65m ounces, AgEq making Tonopah West the highest-grade undeveloped silver project of size in the world
- 140,000m core & RC drilling completed since June 2020 making this the most active silver exploration project in North America
- 2022 drill programs ongoing with 9,000 metre blue-sky drill program at Tonopah North and 25,000 metre resource expansion and step-out programs underway at Tonopah West
- Assays Pending

#### Silver Cloud


- Compelling grassroots exploration opportunity with a large land package of over 45 sq km within the richest gold-mining area in North America, where two prolific gold belts meet
- Drill program planned for fall 2022 based on targeting by Goldspot

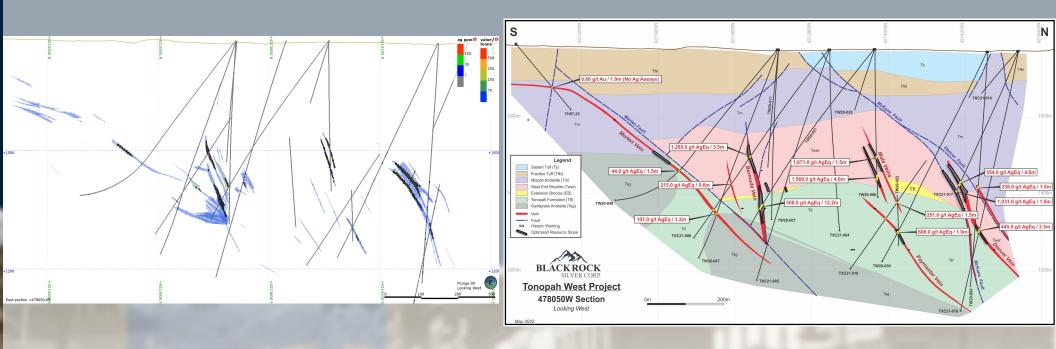



BLACKROCK




# MAIDEN RESOURCE: DRILLHOLE GRADE X THICKNESS MAP (AgEq x M)




# STOPE OPTIMIZED MAIDEN RESOURCE ESTIMATE Victor Area





SEPTEMBER 2022 | 20

# STOPE OPTIMIZED MAIDEN RESOURCE ESTIMATE DPB Area

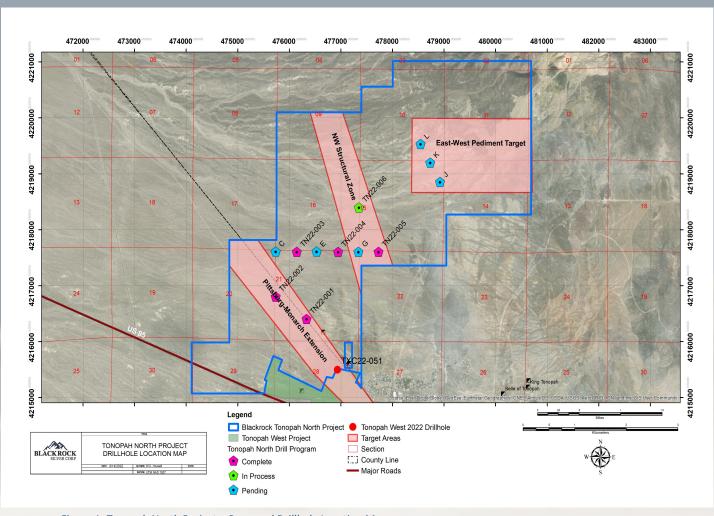
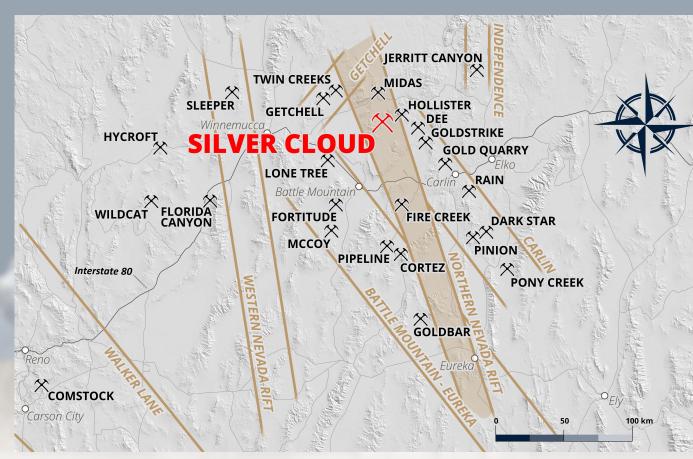


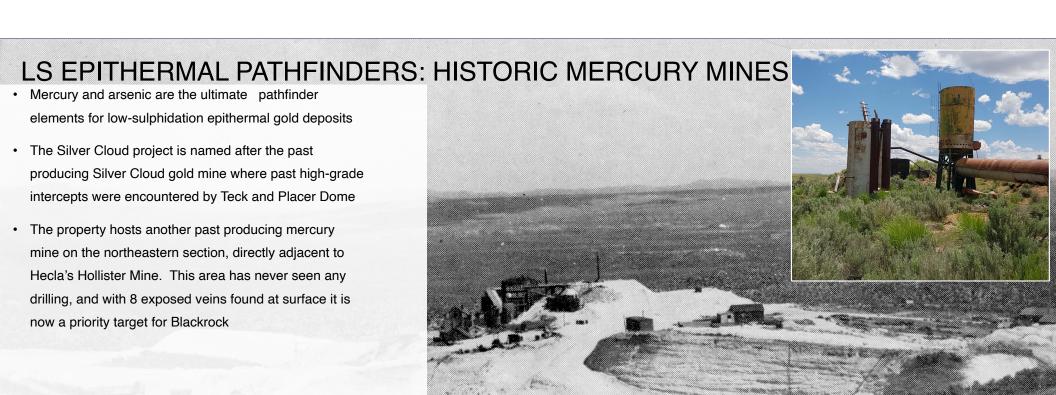
Block Model Showing stopes Geologic Model Showing stopes

#### **TONOPAH NORTH**

#### **District Scale Blue Sky Potential**

- Large land package consists of 260 unpatented mining claims covering 20 sq km adjacent to Tonopah West vein system.
- A total of 9,000 metres of drilling is now underway in twelve RC drillholes
- \* DPB vein system tracked to Tonopah West- Tonopah North property boundary and remains open to NW
- Multiple high-priority silver-gold targets identified, including the extension of the Pittsburg-Monarch Fault System, one of the most significant structures of the Tonopah silver district;
- Lithium potential identified

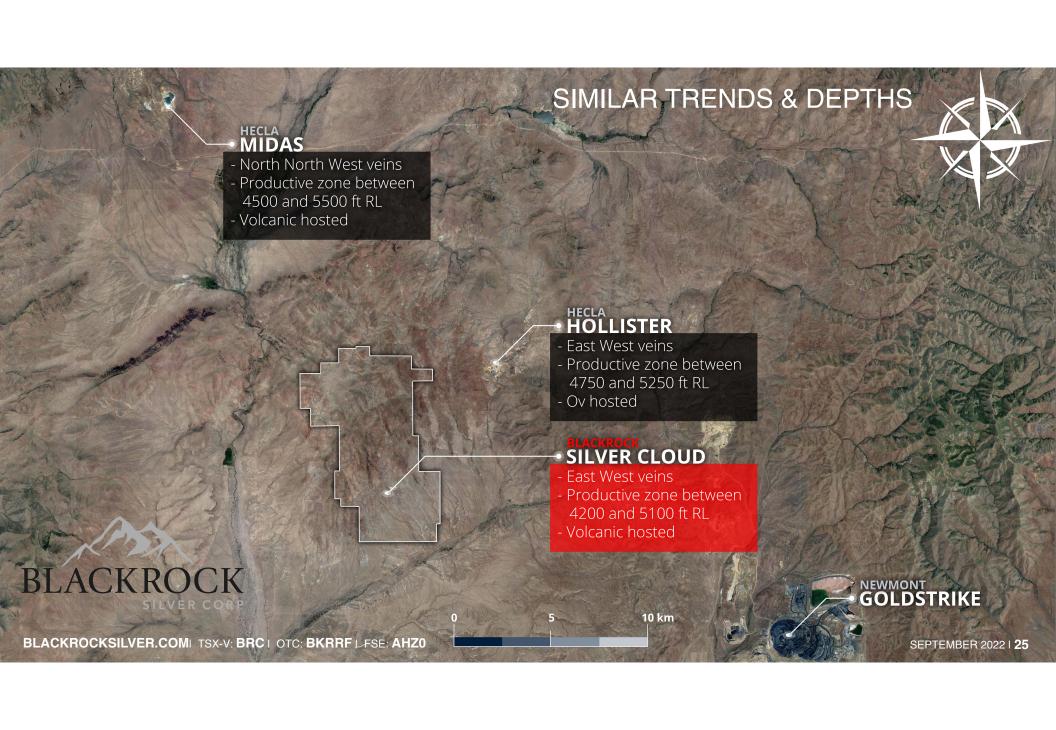





Figure 1: Tonopah North Project – Proposed Drillhole Location Map

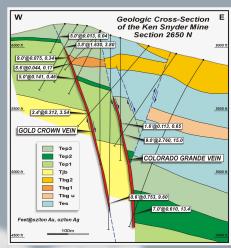
## SILVER CLOUD

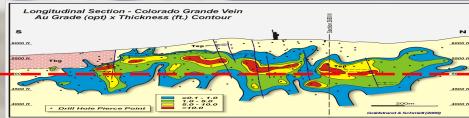
#### The Richest Gold Mining Area In North America

- Large land package consists of 572 mining claims covering 45sq km (+12,000 acres)
- Centered on the Northern Nevada Rift, adjacent to Hecla's Hollister mine
- Former Teck, Placer Dome, and Newmont project with multiple high-grade gold intercepts encountered on limited drilling (~8000m)
- Time Capsule: Undrilled since 2005, new understanding of regional geology derived from nearby disoveries unlocks potential, leads to new geologic interpretation
- Drill program planned for fall 2022 based on targeting by Goldspot



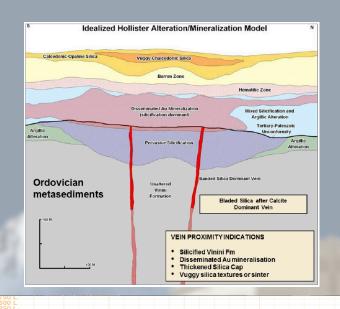




BLACKROCKSILVER.COMI TSX-V. BRC | OTC. BKRRF | FSE: AHZO

SEPTEMBER 2022 I 2



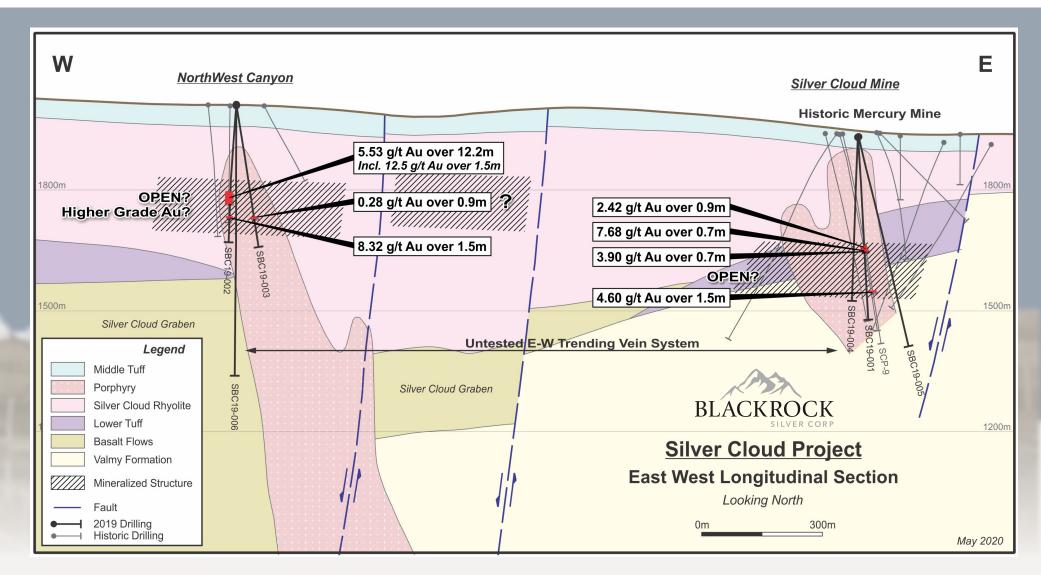

## **COMPARISON OF MIDAS & HOLLISTER MINES**



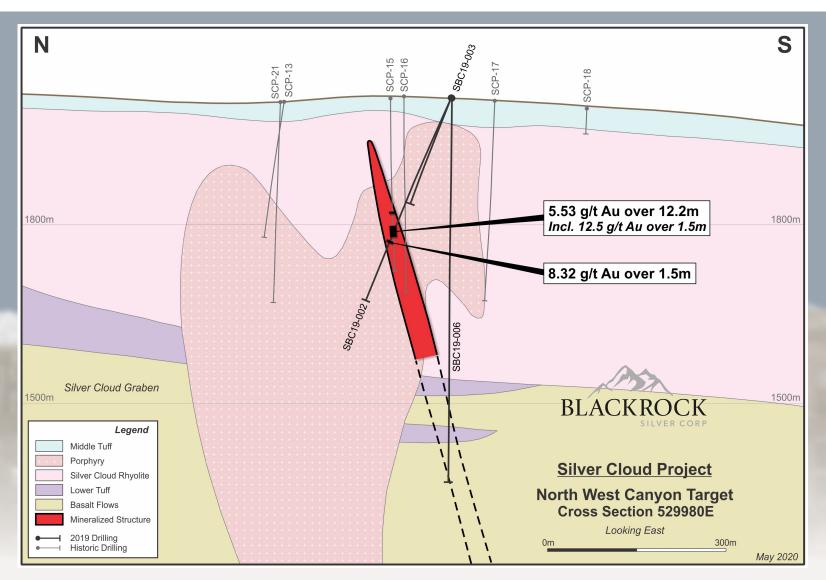


#### **Midas Mine**

- NNW-NW oriented veins
- Productive zone between 4500 and 5500 ft RL
- Volcanic hosted Miocene Elko Prince
- Veins 1.5m to 3m wide
   BLACKROCKSILVER.COMI TSX-V: BRC | OTC: BKRRF | FSE: AHZO

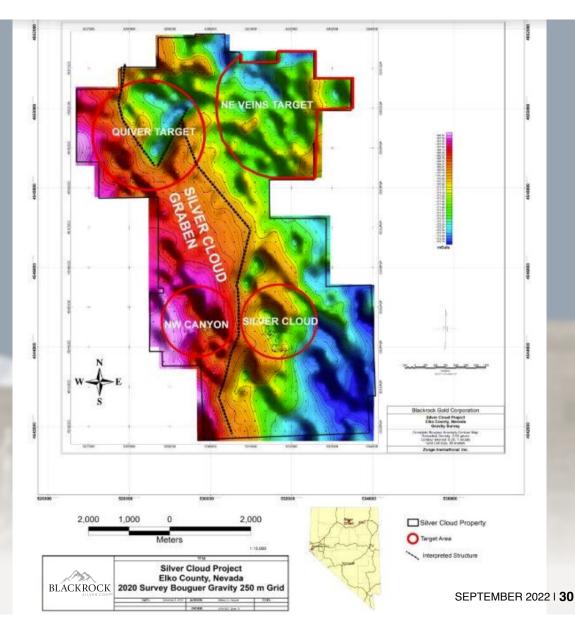



5000 ft RL


#### **Hollister Mine**

- E-W oriented veins
- Productive zone between 4750 and 5250 ft RL
- Sediment hosted Ordovician Vinni Fm.
- Veins 1m to 2m wide

SEPTEMBER 2022 I 26








# A TALE OF TWO GEOLOGIES

- Enhanced Gravity survey indicates two distinct geologic systems cutting across the entire property
- Newly-identified Silver Cloud Graben cuts across western half of project, providing for a thick volcanic rock package that highlights major similarities to structural architecture found at the nearby Midas mine.
- The eastern half of the project looks to share a similar structural setting to the adjacent Hollister mine, which is hosted in the Paleozoics.



BLACKROCKSILVER.COMI TSX-V: BRC | OTC: BKRRF | FSE: AHZO

#### **LEADERSHIP**

#### Bill Howald

#### **Executive Chairman**

William (Bill) Howald is a successful entrepreneur who founded several public companies as well as led the exploration division of a major mining company. To date, Bill has raised approximately \$300 million in project financing. Prior to creating junior mining companies, he was General Manager of Exploration, United States and Latin America, for Placer Dome Inc. During his tenure at Placer Dome, Mr. Howald was an integral part of the teams that delivered over 100Mozs of gold resources where he also oversaw the last systematic drilling campaign done on Silver Cloud. He is a Certified Professional Geologist, and a Qualified Person as defined by NI 43-101.

#### Andrew Pollard

#### **President & CEO, Director**

Prior to joining Blackrock as President & CEO in 2019, Andrew Pollard had established himself as a sought-after management consultant within the mining industry. Mr. Pollard founded the Mining Recruitment Group Ltd (MRG) in 2006 and has amassed a "Who's Who" network in the mining & finance world, leveraging his personal relationships to help shape what have become some of the most prominent and successful resource companies. In a sector where management is crucial, he has served as a trusted advisor to exploration companies and producers ranging in size from seed round through to over \$100 billion in market capitalization.

#### **Daniel Vickerman**

#### **SVP Corporate Development, Director**

Mr. Vickerman is a seasoned institutional sales and corporate finance professional with 25 years of experience in the financial industry and formerly, Managing Director, Head of UK of Beacon Securities UK and former Managing Director, Head of UK for Edgecrest Capital. Prior to joining Edgecrest Capital UK, Mr. Vickerman was Managing Director, Co-Head of Canadian Equity Sales UK at Canaccord Genuity Corp. Mr. Vickerman also formerly worked at Thomas Weisel Partners Group Inc. where he served as Senior Vice President. Daniel spent over 4 years at a London based Alternative asset manager with over \$400 million AUM, trading commodities and FX. Mr. Vickerman has extensive experience working with mineral exploration and development companies, raising over \$1bln for private and listed companies.

He holds a Bachelor of Arts, Economics from the University of Western Ontario and currently serves as an Independent Director of Discovery Metals Corp.



BLACKROCKSILVER.COMI TSX-V: BRC | OTC: BKRRF | FSE: AHZ0

SEPTEMBER 2022 | **31** 

#### LEADERSHIP

#### **David Laing**

#### **Director**

David Laing is a mining engineer with 40 years of experience in the industry. He is an independent mining executive. David was formerly the COO of Equinox Gold, with gold projects in Brazil and California, COO of True Gold Mining which developed a gold heap leaching operation in Burkina Faso, and COO and EVP of Quintana Resources Capital, a base metals streaming company. David was also one of the founding executives of Endeavour Mining, a gold producer in West Africa.

Prior to these recent roles, David held senior positions in mining investment banking and debt advisory at Endeavour Financial, and Standard Bank in New York.

Mr. Laing currently serves as Independent Director of Fortuna Silver Mines Inc., Northern Dynasty Minerals Ltd, and Aton Resources Inc. He also serves as an Advisor to Endeavour Financial Ltd.

#### **Tony Wood**

#### Director

Tony Wood currently serves as Chief Financial Officer of Aurania Resources Inc. Mr. Wood's executive experience includes oversight of finance and operations of various publicly-traded exploration, development, and production staged resource companies. Over the last 20 years, he has successfully completed close to \$1billion in financing and M&A transactions in the mining industry. Mr. Wood has a proven record of success with strategic planning, organizational development, and company transformations. He has been instrumental in achieving performance and value growth across diverse commodities, countries and market conditions.

Mr. Wood is an honours graduate, Management Sciences (Marketing) B.Sc. from the University of Lancaster, U.K., and a qualified Chartered Accountant in the UK and Canada.

#### John Seaberg

#### Director

Mr. Seaberg was Senior Vice President, Strategic Relations for Klondex Mines, Ltd. from 2015 to 2018. Klondex, a junior-tier gold and silver mining company focused on exploration, development, and production in Nevada, USA, and Manitoba, Canada, was recently acquired by Hecla Mining Company. At Klondex, John was responsible for global investor relations and corporate development initiatives as an acting member of the senior executive team. Prior to Klondex, he was employed for more than 10 years by Newmont Mining Corporation, a Fortune 500 company based in Denver. Colorado and the world's second largest gold producer, where he last held the position of Vice President, Investor Relations, John has an MBA from the University of Denver, Colorado.

#### **Andrew Kaip**

#### Lead Director

Mr. Kaip brings over 25 years of experience within the mining business as an executive, geologist, and equity analyst covering the precious metals sector. He currently serves as President and CEO of Karus Gold and a Director of VOX Royalty. Prior to these appointments, he served as Managing Director at BMO Capital Markets where he was co-head of global mining research. In 2010, Mr. Kaip initiated coverage of the silver equities for BMO Capital Markets. During his tenure as their silver analyst, Mr. Kaip was consistently ranked the top Small/Mid Cap Precious Metal analyst by Brendan Wood International. Prior to mining research, Mr. Kaip was a geologist working on projects throughout North, South and Central America. Mr. Kaip is a Professional Geoscientist and holds a B.Sc. in Geology and Earth Science, from Carlton University and a Master's in Geology and Earth Science, from the University of British Columbia.



# ADDENDUM - SIGNIFICANT INTERCEPTS

## ROCK

| HOLEID     | Area          | From (m) | To (m) | Length (m) | Au_g/t | Ag_g/t | AgEq_g/t |
|------------|---------------|----------|--------|------------|--------|--------|----------|
| TW20-001   | Victor Vein   | 554.7    | 557.8  | 3.0        | 2.435  | 221.3  | 464.8    |
| TW20-001   | Victor Vein   | 560.8    | 563.9  | 3.0        | 11.518 | 1046.1 | 2197.9   |
| Inclu      | ıding         | 560.8    | 562.4  | 1.5        | 18.667 | 1736.7 | 3603.4   |
| TW20-001   | Victor Vein   | 574.5    | 603.5  | 29.0       | 5.291  | 435.7  | 964.8    |
| Inclu      | Including     |          | 592.8  | 10.7       | 7.941  | 623.1  | 1417.2   |
| TW20-001   | Victor Vein   | 612.6    | 615.7  | 3.0        | 1.925  | 135.1  | 327.6    |
| TW20-003   | Victor Vein   | 702.6    | 704.1  | 1.5        | 1.890  | 140.0  | 329.0    |
| TW20-005   | DPB           | 402.3    | 403.9  | 1.5        | 1.630  | 182.3  | 345.3    |
| TW20-006   | DPB           | 275.8    | 277.4  | 1.5        | 8.680  | 802.6  | 1670.6   |
| TW20-006   | DPB           | 321.6    | 326.1  | 4.6        | 9.036  | 673.1  | 1576.7   |
| Inclu      | ıding         | 323.1    | 326.1  | 3.0        | 12.633 | 952.0  | 2215.3   |
| TW20-006   | DPB           | 327.7    | 329.2  | 1.5        | 2.170  | 163.0  | 380.0    |
| TW20-007   | DPB           | 484.6    | 486.2  | 1.5        | 2.060  | 180.8  | 386.8    |
| TW20-008   | New Discovery | 242.3    | 243.8  | 1.5        | 3.430  | 218.6  | 561.6    |
| TW20-012C  | Victor Vein   | 581.9    | 583.4  | 1.5        | 2.670  | 223.5  | 490.5    |
| TW20-016   | Step Out      | 233.2    | 234.7  | 1.5        | 4.840  | 5.3    | 489.3    |
| TW20-016   | Step Out      | 307.9    | 309.4  | 1.5        | 1.780  | 144.6  | 322.6    |
| TW20-016   | Step Out      | 385.6    | 387.1  | 1.5        | 3.220  | 231.7  | 553.7    |
| TW20-017   | DPB           | 374.9    | 376.4  | 3.1        | 13.962 | 1070.2 | 2466.3   |
| Inclu      | ıding         | 376.4    | 378.0  | 1.5        | 26.133 | 2029.8 | 4643.1   |
| TW20-017   | DPB           | 440.4    | 442.0  | 1.5        | 2.840  | 221.9  | 505.9    |
| TW20-020C  | Victor        | 585.2    | 586.7  | 1.5        | 4.750  | 334.5  | 809.5    |
| TW20-020C  | Victor        | 592.2    | 593.1  | 0.9        | 19.000 | 1634.4 | 3534.4   |
| TW20-021C  | Victor        | 621.2    | 624.2  | 3.0        | 3.500  | 435.5  | 785.5    |
| TW20-022   | DPB           | 474.0    | 478.6  | 4.5        | 1.530  | 131.6  | 284.7    |
| TW20-024C  | Victor        | 521.5    | 523.1  | 1.6        | 2.050  | 210.0  | 415.0    |
| TW20-024C  | Victor        | 573.3    | 574.7  | 1.4        | 3.560  | 405.0  | 761.0    |
| TW20-024C  | Victor        | 580.0    | 582.4  | 2.4        | 3.948  | 364.0  | 758.8    |
| TW20-027   | DPB           | 474.0    | 475.5  | 1.5        | 1.650  | 120.0  | 285.0    |
| TW20-027   | DPB           | 495.3    | 507.5  | 12.2       | 1.508  | 146.4  | 297.2    |
| TW20-027   | DPB           | 518.2    | 519.7  | 1.5        | 1.090  | 121.0  | 230.0    |
| TW20-027   | DPB           | 548.6    | 551.7  | 3.0        | 1.545  | 157.0  | 311.5    |
| TW20-030   | DPB           | 522.7    | 524.3  | 1.5        | 1.350  | 153.0  | 288.0    |
| TW20-031C  | Victor        | 535.8    | 538.7  | 2.9        | 5.353  | 545.9  | 1081.2   |
| TW20-034   | DPB           | 426.7    | 428.2  | 1.5        | 1.240  | 94.2   | 218.2    |
| TW20-034   | DPB           | 477.0    | 478.5  | 1.5        | 1.270  | 137.0  | 264.0    |
| TW20-034   | DPB           | 480.0    | 481.6  | 1.5        | 0.978  | 105.0  | 202.8    |
| TW20-037   | DPB           | 275.8    | 278.9  | 3.0        | 10.510 | 1187.5 | 2238.5   |
| TW20-040   | DPB           | 481.6    | 483.1  | 1.5        | 1.960  | 164.0  | 360.0    |
| . 1120-040 | 5,5           | 401.0    | 403.1  | 1.5        | 1.500  | 104.0  | 300.0    |

|           |                 | HC.            |            | 15         |               |              |               |
|-----------|-----------------|----------------|------------|------------|---------------|--------------|---------------|
| HOLEID    | Area            | From (m)       | To (m)     | Length (m) | Au_g/t        | Ag_g/t       | AgEq_g/t      |
| TW20-041C | Victor          | 578.2          | 581.3      | 3.1        | 1.884         | 198.0        | 386.4         |
| Inclu     | ding            | 578.2          | 578.5      | 0.3        | 5.500         | 571.0        | 1121.0        |
| TW20-061C | Victor          | 631.6          | 650.1      | 18.5       | 1.539         | 142.0        | 295.0         |
| Inclu     | ıding           | 631.6          | 641.0      | 9.4        | 1.241         | 125.0        | 249.1         |
| Inclu     | ıding           | 631.6          | 633.0      | 1.3        | 4.350         | 354.0        | 789.0         |
| Inclu     | ıding           | 644.0          | 650.1      | 6.1        | 2.743         | 235.0        | 509.3         |
| Inclu     | iding           | 648.6          | 650.1      | 1.5        | 9.830         | 808.0        | 1791.0        |
| TW21-054  | DPB             | 400.8          | 403.9      | 3.1        | 4.780         | 286.0        | 764.0         |
| TW21-058  | Step Out        | 317.0          | 318.5      | 1.5        | 1.290         | 94.5         | 223.5         |
| TW21-062  | Step Out        | 397.8          | 400.8      | 3.1        | 6.150         | 388.0        | 1003.0        |
|           | ıding           | 399.3          | 400.8      | 1.5        | 9.860         | 568.0        | 1554.0        |
| TW21-068  | Step Out        | 385.6          | 387.1      | 1.5        | 1.600         | 178.0        | 338.0         |
| TW21-068  | Step Out        | 410.0          | 414.5      | 4.5        | 6.564         | 743.0        | 1399.4        |
|           | ıding           | 411.5          | 413.0      | 1.5        | 16.000        | 1722.0       | 3322.0        |
| TW21-076  | DPB             | 143.2          | 155.4      | 12.2       | 2.538         | 14.9         | 268.7         |
|           | ding            | 146.3          | 150.9      | 4.6        | 5.372         | 22.9         | 560.1         |
| TW21-077  | Victor          | 599.0          | 602.0      | 3.0        | 3.075         | 310.0        | 617.5         |
|           | ıding           | 599.0          | 600.5      | 1.5        | 4.190         | 443.0        | 862.0         |
| TW21-077  | Victor          | 606.5          | 614.2      | 7.6        | 2.139         | 230.0        | 444.0         |
|           | ıding           | 609.5          | 611.1      | 1.5        | 4.890         | 512.0        | 1001.0        |
| TW21-079  | DPB             | 201.2          | 204.2      | 3.0        | 1.485         | 130.1        | 278.6         |
| TW21-082  | DPB<br>         | 356.6          | 365.8      | 9.1        | 0.850         | 135.0        | 220.3         |
|           | ıding<br>       | 358.1          | 359.6      | 1.5        | 1.670         | 278.0        | 445.0         |
|           | ıding           | 364.2          | 365.7      | 1.5        | 2.330         | 393.0        | 626.0         |
| TW21-083  | DPB             | 440.4          | 441.9      | 1.5        | 1.3           | 137.0        | 264.0         |
| TW21-085  | Victor<br>Iding | 594.4<br>597.4 | 599<br>599 | 4.6<br>1.6 | 3.113<br>7.12 | 275.6<br>577 | 338.9<br>1289 |
| TW21-090  | Step Out        | 132.6          | 134.1      | 1.5        | 2.150         | 67.3         | 282.3         |
| TW21-092C | Victor W.       | 467.7          | 469.9      | 2.2        | 1.533         | 140.9        | 294.2         |
| l mate    | Ext.            | 467.7          | 468.7      | 1.0        | 2.860         | 250.0        | 536.0         |
| TW21-093C | Victor          | 494.3          | 495.1      | 0.8        | 1.930         | 207.0        | 400.0         |
| TW21-094C | Victor          | 527.8          | 532.2      | 4.4        | 1.837         | 140.8        | 324.5         |
|           | ıding           | 528.2          | 530.4      | 2.2        | 2.956         | 226.8        | 522.4         |
| TW21-094C | Victor          | 597.4          | 598.3      | 0.9        | 0.942         | 117.0        | 211.2         |
| TW21-094C | Victor          | 601.2          | 601.9      | 0.7        | 1.020         | 117.0        | 219.0         |
| TW21-095C | Victor          | 551.1          | 552.6      | 1.5        | 3.660         | 376.0        | 742.0         |
| TW21-095C | Victor          | 608.0          | 608.2      | 0.2        | 1.100         | 152.0        | 262.0         |
| TW21-096C | Victor          | 465.0          | 466.1      | 1.1        | 1.970         | 126.0        | 323.0         |
| TW21-096C | Victor          | 467.4          | 468.9      | 1.5        | 1.140         | 118.0        | 232.0         |
| TW21-097C | Victor          | 461.2          | 467.7      | 6.5        | 1.945         | 261.3        | 455.8         |
|           | ıding           | 464.5          | 466.1      | 1.6        | 5.260         | 655.0        | 1181.0        |
| TW21-097C | Victor          | 469.4          | 477.5      | 8.1        | 1.076         | 192.9        | 300.5         |
| TW21-097C | Victor          | 488.2          | 489.9      | 1.7        | 3.930         | 660.0        | 1053.0        |
| TW21-097C | Victor          | 499.3          | 500.9      | 1.6        | 0.917         | 122.0        | 213.7         |

|           |          |          |        |            |        | BLACK  |          |  |  |  |
|-----------|----------|----------|--------|------------|--------|--------|----------|--|--|--|
| HOLEID    | Area     | From (m) | To (m) | Length (m) | Au_g/t | Ag_g/t | AgEq_g/t |  |  |  |
| TW21-109  | Step Out | 553.2    | 554.7  | 1.52       | 2.000  | 298.0  | 498.0    |  |  |  |
| TW21-110  | Step Out | 260.6    | 262.1  | 1.52       | 2.030  | 7.5    | 210.5    |  |  |  |
| TW21-110  | Step Out | 341.4    | 342.9  | 1.52       | 1.460  | 157.0  | 303.0    |  |  |  |
| TW21-116  | Victor   | 435.9    | 437.4  | 1.52       | 1.600  | 187.0  | 347.0    |  |  |  |
| TW21-116  | Victor   | 519.7    | 521.2  | 1.52       | 1.490  | 144.0  | 293.0    |  |  |  |
| TW21-116  | Victor   | 538.0    | 541.0  | 3.05       | 1.164  | 176.5  | 292.9    |  |  |  |
| TXC21-001 | DPB      | 439.8    | 442.9  | 3.1        | 1.291  | 136.1  | 265.2    |  |  |  |
| TXC21-002 | DPB      | 514.0    | 515.1  | 1.1        | 3.080  | 300.0  | 608.0    |  |  |  |
| TXC21-004 | DPB      | 504.1    | 504.7  | 0.6        | 1.050  | 139.0  | 244.0    |  |  |  |
| TXC21-005 | DPB      | 362.9    | 363.4  | 0.5        | 0.842  | 159.0  | 243.2    |  |  |  |
| TXC21-005 | DPB      | 371.7    | 372.1  | 0.4        | 5.660  | 677.0  | 1243.0   |  |  |  |
| TXC21-005 | DPB      | 399.0    | 400.0  | 1.0        | 1.300  | 135.0  | 265.0    |  |  |  |
| TXC21-006 | DPB      | 348.7    | 352.2  | 3.5        | 7.281  | 510.9  | 1239.0   |  |  |  |
| Inclu     | ding     | 349.0    | 349.9  | 0.9        | 21.866 | 1355.0 | 3541.6   |  |  |  |
| TXC21-008 | DPB      | 476.4    | 477.6  | 1.2        | 0.684  | 159.0  | 227.4    |  |  |  |
| TXC21-008 | DPB      | 484.2    | 484.8  | 0.6        | 1.820  | 234.0  | 416.0    |  |  |  |
| TXC21-008 | DPB      | 487.2    | 487.7  | 0.5        | 4.210  | 401.0  | 822.0    |  |  |  |
| TXC21-009 | DPB      | 442.6    | 443.2  | 0.6        | 1.180  | 163.0  | 281.0    |  |  |  |
| TXC21-010 | DPB      | 458.6    | 459.3  | 0.7        | 5.610  | 445.0  | 1006.0   |  |  |  |
| TXC21-010 | DPB      | 472.9    | 475.3  | 2.4        | 4.040  | 301.2  | 705.1    |  |  |  |
| TXC21-010 | DPB      | 527.6    | 528.2  | 0.6        | 27.500 | 1537.0 | 4287.0   |  |  |  |
| TXC21-012 | DPB      | 403.4    | 403.7  | 0.3        | 1.900  | 127.0  | 317.0    |  |  |  |
| TXC21-012 | DPB      | 406.5    | 407.1  | 0.6        | 0.904  | 142.0  | 232.4    |  |  |  |
| TXC21-015 | DPB      | 554.7    | 556    | 1.3        | 2.190  | 260.0  | 479.0    |  |  |  |
| TXC21-015 | DPB      | 610.5    | 611.9  | 1.4        | 0.783  | 120.5  | 198.8    |  |  |  |
| TXC21-015 | DPB      | 625.3    | 626.3  | 1          | 2.400  | 297.0  | 537.0    |  |  |  |
| TXC21-016 | DPB      | 477.4    | 480.7  | 3.3        | 2.256  | 222.7  | 448.3    |  |  |  |
| Inclu     | ding     | 477.4    | 477.9  | 0.5        | 5.520  | 494.0  | 1046.0   |  |  |  |
| TXC21-016 | DPB      | 487.2    | 488.1  | 0.9        | 0.761  | 123.5  | 199.6    |  |  |  |
| TXC21-017 | DPB      | 369.7    | 370.2  | 0.5        | 2.610  | 155.0  | 416.0    |  |  |  |
| TXC21-017 | DPB      | 371.2    | 371.6  | 0.4        | 1.020  | 108.0  | 210.0    |  |  |  |
| TXC21-017 | DPB      | 373.4    | 374.7  | 1.3        | 1.217  | 132.0  | 253.7    |  |  |  |
| TXC21-017 | DPB      | 375.5    | 376.3  | 0.8        | 1.550  | 126.0  | 281.0    |  |  |  |
| TXC21-017 | DPB      | 377.9    | 385.3  | 7.4        | 2.003  | 180.6  | 380.8    |  |  |  |

BLACKROCKSILVER.COMI TSX-V: BRC | OTC: BKRRF TW21-097C

232.3

SEPTEMBER 2022 I 33

# ADDENDUM – SIGNIFICANT INTERCEPTS

## BLACKROCK

| HOLEID    | Area        | From (m)                | To (m) | Length (m) | Au_g/t | Ag_g/t | AgEq_g/t | HOLEID    | Area | From (m) | To (m) | Length (m) | Au_g/t | Ag_g/t | AgEq_g/t |
|-----------|-------------|-------------------------|--------|------------|--------|--------|----------|-----------|------|----------|--------|------------|--------|--------|----------|
| TXC21-026 | DPB         | 359.1                   | 363.2  | 4.1        | 9.070  | 1120.0 | 2027.0   | Inclu     | ding | 381      | 382.5  | 1.5        | 5.467  | 487.3  | 1034.0   |
| Inclu     | iding       | 361.2                   | 362.1  | 0.9        | 20.850 | 2994.5 | 5079.5   | TXC21-017 | DPB  | 395.3    | 396.4  | 1.1        | 1.465  | 148.5  | 295.0    |
| TXC21-027 | DPB         | 373.7                   | 375.5  | 1.8        | 1.168  | 173.2  | 290.0    | TXC21-017 | DPB  | 397.6    | 401.1  | 3.5        | 2.560  | 279.2  | 295.0    |
| TXC21-027 | DPB         | 376.8                   | 377.7  | 0.9        | 3.457  | 315.7  | 661.3    | Inclu     | ding | 399.6    | 401.1  | 1.5        | 4.950  | 536.0  | 1031.0   |
| TXC21-027 | DPB         | 378.2                   | 379.7  | 1.5        | 6.500  | 592.1  | 1242.1   | TXC21-025 | DPB  | 330      | 330.5  | 0.5        | 1.220  | 152.0  | 274.0    |
| Inclu     | lding       | 379                     | 379.7  | 0.7        | 12.100 | 1095.0 | 2305.0   | TXC21-025 | DPB  | 333.8    | 334.1  | 0.3        | 3.220  | 429.0  | 751.0    |
| TXC21-028 | DPB         | 524.9                   | 526.1  | 1.2        | 4.420  | 68.4   | 510.4    | TXC21-026 | DPB  | 301.1    | 302.7  | 1.6        | 2.500  | 210.0  | 460.0    |
| TXC21-030 | DPB         | 446.8                   | 449.9  | 3.0        | 1.600  | 162.5  | 322.5    | TXC21-026 | DPB  |          |        | 0.3        |        |        | -        |
| TXC21-030 | DPB         | 545.6                   | 545.9  | 0.3        | 2.170  | 244.0  | 461.0    | 1XC21-026 | DPB  | 310      | 310.3  | 0.3        | 1.010  | 119.0  | 220.0    |
| TXC21-031 | DPB         | 388.2                   | 388.7  | 0.5        | 1.930  | 229.0  | 422.0    | TXC21-026 | DPB  | 359.1    | 363.2  | 4.1        | 9.070  | 1120.0 | 2027.0   |
|           |             |                         |        |            |        |        |          | Inclu     | ding | 361.2    | 362.1  | 0.9        | 20.850 | 2994.5 | 5079.5   |
| TXC21-032 | DPB         | 361.8                   | 363.3  | 1.5        | 1.810  | 190.0  | 371.0    | TXC21-027 | DPB  | 373.7    | 375.5  | 1.8        | 1.168  | 173.2  | 290.0    |
| TXC21-035 | DPB         | 396.9                   | 397.2  | 0.4        | 4.970  | 9.5    | 506.5    | TXC21-027 | DPB  | 376.8    | 377.7  | 0.9        | 3.457  | 315.7  | 661.3    |
| TXC21-036 | DPB         | 507.5                   | 508.1  | 0.6        | 1.480  | 128.0  | 276.0    | TXC21-027 | DPB  | 378.2    | 379.7  | 1.5        | 6.500  | 592.1  | 1242.1   |
| TXC21-036 | DPB         | 604.1                   | 604.7  | 0.5        | 0.924  | 120.0  | 212.4    | Inclu     | ding | 379      | 379.7  | 0.7        | 12.100 | 1095.0 | 2305.0   |
| TXC21-039 | DPB         | 299.9                   | 300.8  | 0.91       | 8.510  | 850.0  | 1701.0   | TXC21-028 | DPB  | 524.9    | 526.1  | 1.2        | 4.420  | 68.4   | 510.4    |
| TXC21-039 | DPB         | 367.3                   | 367.9  | 0.61       | 3.200  | 333.0  | 653.0    | TXC21-020 | DPB  | 488.6    | 492.1  | 3.5        | 2.419  | 258.3  | 500.2    |
| TXC21-039 | DPB         | 415.4                   | 416.0  | 0.58       | 1.580  | 156.0  | 314.0    | Inclu     | ding | 491.0    | 492.1  | 1.1        | 4.370  | 427.0  | 864.0    |
| TXC21-039 | DPB         | 417.9                   | 418.7  | 0.82       | 1.090  | 96.8   | 205.8    | TXC21-020 | DPB  | 522.1    | 524.0  | 1.8        | 2.230  | 141.7  | 364.7    |
| TXC21-039 | DPB         | 471.4                   | 471.8  | 0.46       | 1.070  | 103.0  | 210.0    | TXC21-020 | DPB  | 524.9    | 526.2  | 1.4        | 1.980  | 153.0  | 351.0    |
| TXC21-039 | DPB         | 487.6                   | 488.0  | 0.34       | 1.260  | 109.0  | 235.0    | TXC21-020 | DPB  | 527.2    | 528.2  | 1.0        | 2.543  | 195.9  | 450.2    |
| TXC21-040 | DPB         | 544.4                   | 545.1  | 0.70       | 1.560  | 155.0  | 311.0    | TXC21-020 | DPB  | 557.9    | 558.8  | 0.9        | 1.990  | 161.0  | 360.0    |
| TXC21-042 | DPB         | 435.9                   | 436.8  | 0.91       | 2.730  | 262.0  | 535.0    | TXC21-020 | DPB  | 608.0    | 608.4  | 0.4        | 4.440  | 395.0  | 839.0    |
| TXC21-045 | DPB         | 563.6                   | 564.3  | 0.73       | 2.270  | 380.0  | 607.0    | TXC21-021 | DPB  | 591.8    | 592.8  | 1.0        | 1.500  | 144.0  | 294.0    |
| TXC21-045 | DPB         | 565.1                   | 567.1  | 2.00       | 3.640  | 377.3  | 741.3    | TXC21-022 | DPB  | 311.3    | 311.7  | 0.4        | 1.220  | 126.0  | 248.0    |
|           | ıding       | 566.3                   | 567.1  | 0.79       | 7.640  | 741.0  | 1505.0   |           |      |          | -      |            |        |        |          |
| TXC21-047 | DPB         | 428.9                   | 430.1  | 1.22       | 1.710  | 30.3   | 201.3    | TXC21-022 | DPB  | 489.7    | 490.0  | 0.3        | 1.115  | 152.0  | 263.5    |
| TXC21-048 | DPB         | 432.2                   | 432.5  | 0.31       | 1.390  | 117.0  | 256.0    | TXC21-023 | DPB  | 388.9    | 389.5  | 0.5        | 1.840  | 160.0  | 344.0    |
| TXC21-048 | DPB         | 475.8                   | 476.3  | 0.55       | 8.392  | 875.5  | 1714.7   | TXC21-025 | DPB  | 330      | 330.5  | 0.5        | 1.220  | 152.0  | 274.0    |
|           | ıding       | 475.8                   | 476.1  | 0.31       | 11.267 | 1136.0 | 2262.7   | TXC21-025 | DPB  | 333.8    | 334.1  | 0.3        | 3.220  | 429.0  | 751.0    |
| TXC22-050 | DPB         | 434.5                   | 435.0  | 0.46       | 3.890  | 812.0  | 1201.0   | TXC21-026 | DPB  | 301.1    | 302.7  | 1.6        | 2.500  | 210.0  | 460.0    |
|           | g/t + Au_g/ | 434.5<br>t*100; AuEq_g/ |        |            |        |        |          |           |      |          |        |            |        |        |          |
|           |             |                         | val    | lues       |        |        |          | TXC21-026 | DPB  | 310      | 310.3  | 0.3        | 1.010  | 119.0  | 220.0    |

BLACKROCKSILVER.COMI TSX-V: BRC | OTC: BKRRF | FSE: AHZO