

Strategies for critical metals

June, 2022

Ken Hoffman Ken_Hoffman@mckinsey.com

CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission of McKinsey & Company is strictly prohibited

Who will be the winners in the battery market and why

Cell production bottlenecks may be caused by the raw materials stream – inconsistency adds to the inability to produce high quality batteries in large amounts

Energy density is the key	Solve the issu consumers	ies of both	Development of new vehicles shrunk from 10 years to 3-4 years– raising risk for suppliers	
Median consumers look for an EV that has the same to better attributes to their current car				
Current average range 650-	•900 km ¹	Current Avg refueling time: 5-7 mins ¹		

1. Average range and refueling time of a gasoline or diesel fueled vehicle

Winning questions

What are consumers of batteries looking for?

- Range
- Refuel time

What are automakers looking to build?

- Technology industry not automotive
- Commercialization has been an issue
 - Quality of raw materials
 - Consistency and quantity

What is the value chain and how do you participate?

- Battery materials are NOT commodities
- Commercial considerations as important as mine parameters

YTD 2021 EV sales have more than doubled 2020 levels, with chip and cell constraints hurting supply

Key insights

Electric vehicle sales reached 6.75 mn units in 2021 a more than doubling of demand from 2020

Demand for LFP batteries soared by over 170%, while NMC battery production rose by almost 100%

Demand continues to rise sharply in the beginning of 2022, but raw material prices have forced major price hikes in EV's

Li-ion battery demand is expected to grow 30% p.a. in the coming years...

Driven by EVs, other road transport, and grid applications

Global Li-ion battery cell demand by sector, GWh

Global PEV³ sales are expected to exceed 200 million by 2035,

TCO⁴ parity between electric and diesel is reached first for urban eBuses and light-duty eTrucks

driving global battery demand

Grid battery storage is expected to increase with increasing shares of intermittent renewable electricity generation

Source: IHS; WEF; McKinsey Battery Demand Model

Production is becoming more localized, with an increasing share of capacity additions in Europe and US

Announced battery cell production capacity, GWh p.a.

Key takeaway

Cell suppliers are increasingly announcing capacity closer to OEMs in Europe, the US and rest of world with the combined geographies exceeding 40% of global capacity in 2030

Announced new capacities are exceeding expected demand, with realized supply likely to be lower than announced e.g., due to failed capacity additions, yield implications, or ramp-up delays

To match expected demand investments of USD ~700bn are required until 2030

Cumulative Capex investment required, 2020 – 2030, USD bn

Key takeaway

While China will remain major production location, localization of capacity is expected to drive Capex growth in Europe and the US. In 2030, cumulative Capex requirements of Europe and US combined are expected to exceed those in China

Battery recycling will emerge as a source of sustainable raw materials with 16,300 kt of material available in 2040

Available material for recycling by source, 2020 - 2040, kt

2022 H1 FOR MORE GRANULAR SPLIT REACH OUT TO <u>BATTERY_INSIGHTS@MCKINSEY.COM</u>

Key takeaway

- Global available volume for recycling is expected to increase 7-fold between 2020 and 2030
- Production scrap will remain the main source of material until 2035, with recycling of End Of Life batteries becoming the major source afterwards

We see battery chemistry evolving over three horizons

The scale-up of new generation batteries would not cause a strong change in the choice of raw materials

1. Very early stage reflexion

2. Based on 7-year contracts in average, last known supply order signed with Volkswagen in March 2021

Backup: Cathode and anode technology evolution to drive the market towards lithium hydroxide and lithium metal adoption

Anode Split, GWh

EV growth implies the need for new mines OEM's will increase the importance to secure long-term sourcing options

Expected demand and supply for key metals in 2030

2021 H1 For most recent data contact MineSpans Team

The Paradigm shift of new battery technologies to the raw material challenge– Why new chemistries stretch out raw material needs

New Anode Technology Batteries

Competitors fall into three innovation categories

Innovation category	Explanation	Energy density cap	Examples
Improvements to Li-ion	Incremental energy density improvements to cathode & anode, cell design, heat dissipation techniques etc.	350-400Wh/kg	24 SFREYR Panasonic MICTOVAST
Novel ways of incorporating high silicon in anode	High (>10%) silicon loading in the anode, enabled through novel solutions to current swelling & conductivity challenges	400-450Wh/kg	SILA ECCUVIX Group 1/2 n exe o n° & ADVANO ECCHANOLOGIES ENEVATE
Shift to lithium metal anode	Use of Lithium metal as anode material to significantly increase potential energy density; includes solid state and semi- solid state cells	500-650Wh/kg	Solid Power QuantumScape CATL inic A123 Systems Deses Toyota Prologium

The 3 types of SSB technologies have distinct advantages and shortcomings

	Description	Competitors	
Polymer	 Combination of Polymers with lithium-salts PEO-LiTFSI most investigated system, but suffers from poor ionic conductivity at room temperature 	Bolloré Québec	
Oxide/	High safety due to low reactivity	QuantumScano	
Phosphate	 Prone to mechanical failure and hard to process due to brittleness 	QuantumScape	
	 Pressurized cells required for a constant electrode-electrolyte contact 		
	 Low cycle life due to contact loss of electrode-electrolyte interface 	s⊕lid energy	
	 Mainly garnet & perovskite (oxides) and NASICON (phosphates) materials 	0,	
Sulfide	 Highest ionic conductivity in solid state 		
	 Safety issues due to high reactivity during manufacturing 		
	 Good electrode-electrolyte contact and processability due to ductility 	ΤΟΥΟΤΑ	
	 Small potential stability window requires electrode coating 	ŚAMSUNG	
	 Example cells include argyrodite, LGPS, LPS, LSPS, LSPS-MS 	Panasonic	

What are the best ways to ensure long term delivery of EV Battery materials with Miners

LT supply agreement

Equity, JV, or d	lirect Investment
------------------	-------------------

Benefits:

- Allows direct precipitation in commodity price movements
- Will help fund industry expansion
- Stake could be sold at a later date

Cons:

- Not guaranteed to increase supply
- If miner has ESG issues, could reflect poorly on major investors
- If majority investor, does the OEM want to become a "miner", if a minority investor, what control does it have to influence supply?
- No guarantee of lower commodity costs
- Force Majeure risks

В •	enefits: Simple
•	Low cost to implement
С	ons:
•	No impact on pricing, as these contracts are based upon index pricing plus/minus quality or market
•	LT agreements with price ceilings have seen these contracts broken in high price environments
•	Takes on mining risks such as weather events, strikes, geopolitical risks etc which could impact supply.

Str	ea	m	ir	Ŋ

Benefits:

- Long-term, low-cost supply of material at a fixed cost
- Allows for price certainty over a long period of time
- In high price environments, could be seen as a negative interest rate on investment or very high IRR

Cons:

- Large upfront cost
- In a low-price environment, very high implied interest rate/low IRR
- Takes on mining risks such as weather events, strikes, geopolitical risks etc which could impact supply.
- Has yet to be done publicly for lithium or nickel