

Innovation and Experience

October 2017

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this presentation. No stock exchange, securities commission or other regulatory authority has approved or disapproved the information contained herein. Certain statements contained in this presentation may constitute forward-looking statements under Canadian securities legislation which are not historical facts and are made pursuant to the "safe harbor" provisions under the United States Private Securities Litigation Reform Act of 1995. Such forward-looking statements are based upon the Company's reasonable expectations and business plan at the date hereof, which are subject to change depending on economic, political and competitive circumstances and contingencies. Readers are cautioned that such forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause a change in such assumptions and the actual outcomes and estimates to be materially different from those estimated or anticipated future results, achievements or position expressed or implied by those forward-looking statements. Risks, uncertainties and other factors that could cause the Company's plans to change include changes in demand for and price of gold and other commodities (such as fuel and electricity) and currencies; changes or disruptions in the securities markets; legislative, political or economic developments in Brazil; the need to obtain permits and comply with laws and regulations and other regulatory requirements; the possibility that actual results of work may differ from projections/expectations or may not realize the perceived potential of the company's projects; risks of accidents, equipment breakdowns and labor disputes or other unanticipated difficulties or interruptions; the possibility of cost overruns or unanticipated expenses in development programs; operating or technical difficulties in connection with exploration, mining or development activities; the speculative nature of gold exploration and development, including the risks of diminishing quantities of grades of reserves and resources; and the risks involved in the exploration, development and mining business. The Company disclaims any intention or obligation to update or revise any forward-looking statements whether as a result of new information, future events or otherwise.

Mo Srivastava, Vice President of TriStar Gold, is the Qualified Person who supervised the preparation of the technical information contained in this presentation and approves its publication.

DISCLAIMER

MANAGEMENT TEAM

Nick Appleyard: Pres & CEO

- Former CEO of Chaparral Gold (CHL)
- Former VP Corporate Development of International Minerals (IMZ)

Mo Srivastava: Vice

- President
 President and founder of FSS Canada and Benchmark Six
- Advisor to Boards of Directors

Mark E. Jones, III: Chairman

- Founder and Chairman of Brazauro Resources
- Founder and Director of Crown Resources
- Director of Arequipa Resources

Elton L.S. Pereira: VP Exp

• 25+ years of experience in mineral exploration throughout Brazil, most of it with the Rio Tinto Group

Non-Executive Directors

٠

• Former CFO of IMZ, CHL and

Placer Dome North America

Scott Brunsdon: CFO

Brian Irwin: Corp. Sec, Dir

• Former partner at Dumoulin Black Law Firm

- Leendert Krol: Former Newmont Mining, Victoria Gold, Romarco
- Diane Garrett: Wellgreen Platinum, Former Romarco
- Quinton Hennigh: Novo Resources, Former Newmont
- Carlos Vilhena: Pinheiro Neto Advogados

TSX VENTURE TICKER SYMBOL: TSG

~ C\$ 51 million	
~ C\$ 3 million	F
C\$ 0.33	
C\$ 0.22 – 0.44	
	~ C\$ 51 million ~ C\$ 3 million C\$ 0.33 C\$ 0.22 – 0.44

Shares Issued	155.5 million
Fully Diluted Shares	186.0 million
Stock Options	14.8 million
Warrants	15.6 million

Insiders and Associates	27%
US Global	18%
RBC Global Asset Mgmt	6%
Sun Valley	5%
 2 New Funds	6%
TOTAL NON-RETAIL	62%
IMPLIED RETAIL	38%

MAJOR SHAREHOLDERS (I & O)

CAPITAL STRUCTURE

JUST GETTING GOING

Sept 2017 Resource Estimate

Region	Resource Category	Tonnage (Mt)	Grade (g/t Au)	Metal Content (Moz Au)
Esperança South	Inferred	21	1.5	1.0
Esperança Center	Inferred	10	0.9	0.3
Project Total	Inferred	31	1.3	1.3

¹Numbers have been rounded to reflect the precision of an Inferred mineral resource estimate.

²The reporting cutoff corresponds to the approximate marginal cutoff for an open pit with total operating cost (non-waste mining + processing + G&A) of \$US 15.00/t, metallurgical recovery of 98% and a gold price of \$US 1,200/oz. These are mineral resources and not reserves and as such do not have demonstrated economic viability.

³The metal content estimates reflect gold in situ, and do not include factors such as external dilution, mining losses and process recovery losses.

⁴TriStar is not aware of any environmental, permitting, legal, title, taxation, socio-economic, marketing or political factors that might materially affect these mineral resource estimates.

⁵Adrian Martinez (P.Geo.) of CSA Global is the independent Qualified Person for the mineral resource estimate

- Located in mining friendly Pará State, Brazil
- Large paleo-placer with strong similarities to Tarkwa and Jacobina gold mines
- ➢ 16 km of mineralized outcrop
- Great infrastructure
 - Highway 163
 - Town of Castelo de Sonhos
 - 138 kVA power line

0 500 1000m

EXPLORATION TARGET RANGE

- Pessimistic case (P10)
 - 2.1 Moz in 50 Mt at 1.3 g/t
- Optimistic case (P90)
 - 4.3 Moz in 84 Mt at 1.6 g/t

Metallurgy

- Initial testing shows gold recoverable by:
 - Cyanidation 98%
 - Gravity, up to 84%

The resulting Exploration Target range is conceptual in nature since the CDS project requires further drilling and surface sampling. There is no certainty that future resource estimates for the project will achieve the Exploration Target numbers.

RESOURCE DEFINITION RC

- Total of 15,000 m now complete
 - Target depth 120m
 - Vertical holes
 - 1Kg Leachwell assays
 - Optical Televiewer
 - Esperança Centra and South
 - At least 3km strike to drill
 - Esperança West and East
 - To be drilled in 2018
- To Sept 8, 2017
 - 95 holes (10,512m) with assays

TRISTAR GOLD 9

• 37 holes without final assays

Sept 2017 Resource Estimate

Region	Resource Category	Tonnage (Mt)	Grade (g/t Au)	Metal Content (Moz Au)
Esperança South	Inferred	21	1.5	1.0
Esperança Center	Inferred	10	0.9	0.3
Project Total	Inferred	31	1.3	1.3

¹Numbers have been rounded to reflect the precision of an Inferred mineral resource estimate.

²The reporting cutoff corresponds to the approximate marginal cutoff for an open pit with total operating cost (non-waste mining + processing + G&A) of \$US 15.00/t, metallurgical recovery of 98% and a gold price of \$US 1,200/oz. These are mineral resources and not reserves and as such do not have demonstrated economic viability.

³The metal content estimates reflect gold in situ, and do not include factors such as external dilution, mining losses and process recovery losses.

⁴TriStar is not aware of any environmental, permitting, legal, title, taxation, socio-economic, marketing or political factors that might materially affect these mineral resource estimates.

⁵Adrian Martinez (P.Geo.) of CSA Global is the independent Qualified Person for the mineral resource estimate

ANALOGOUS DEPOSITS

	TARKWA	JACOBINA	CASTELO DE SONHOS
Location	Ghana, West Africa	Brazil, South America	Brazil, South America
Age (Ga)	2.10	2.0	2.0-2.1
Total Deposit Size (Moz Au)	~30 Moz Au	~10 Moz Au	tbd
Grade	1.2 g/t (pit)	1.9 g/t (pit)	1.3 – 1.6 g/t (Exp Targ*)
Thickness of Mineralized Zones	≤ 8 m	≤ 25m	≤ 20m
Strip ratio pit	6:1 to 9:1	4:1 to 6:1	8:1 (2016 report)
Host Rock	Quartzites and pebble conglomerates	Quartzites and pebble conglomerates	Quartzites and pebble conglomerates

*The resulting Exploration Target range is conceptual in nature since the CDS project requires further drilling and surface sampling. There is no certainty that future resource estimates for the project will achieve the Exploration Target numbers. TRISTAR GOLD 11

Experienced Management, Clear Vision

- All management invested in the company
- Quality project development team
- Growth
 - through development of CDS
 - acquisition of new properties
- Gold and silver in the Americas

WHY TRISTAR GOLD?

> Castelo de Sonhos: An exceptional deposit

- NI 43-101 Exploration Target range
- Mining friendly region of Pará State, Brazil
- Excellent local infrastructure
- 16 km of continuously mineralized outcrop with down-dip extensions
- Excellent preliminary metallurgical results
- 15,000m of RC drilling completed

> Tightly held stock position

- Insiders and Associates control 27% of Issued and Outstanding shares
- Major institutions control a further 35%
- Implied retail control: 38%

> Catalysts

- Complete Phase 3 RC infill drilling and assaying and update resource estimate
- Publish Preliminary Economic Assessment

CASTELO DE SONHOS PHOTOS

Location of CDS plateau & village

Field camp office at CDS

Tunnels dug by garimpeiros from workings at CDS

Sample storage at CDS field camp

Espeneranca Central

View of the Southwest extension from the air

Headquarters, (U.S.A.)

Nick Appleyard: President & CEO Scott Brunsdon: CFO Scottsdale Office: +1 (480) 794-1244

TSX.V: TSG

Website: www.TriStarGold.com

E-mail: info@tristargold.com

>Optical Televiewer example

➢RC v Core Twin holes

➢ Drill Cross Sections − Dr. Rael Lipson

Drill Longitudinal Fence – Dr. Rael Lipson

➢Selected results RC drilling

➢Analogous Deposits

Depositional Environment

OTV and Petrophysics

RC v Core Twin Holes

Results give high degree of confidence in RC sampling protocols and results.

Hole From To Au RC-17-156 34 35 1m @ 1.3 g/t RC-17-157 61 63 2m @ 1.1 g/t RC-17-159 43 48 5m @ 2.8 g/t RC-17-160 51 60 9m @ 2.7 g/t RC-17-161 96 99 3m @ 3.4 g/t RC-17-164 14 16 2m @ 1.0 g/t RC-17-165 47 60 13m @ 2.9 g/t (CSH-12-44 twin, 14m @ 4.5g/t) inc. 53 59 6m @ 5.4 g/t (CSH-12-44 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 61 63 2m @ 6.0 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 71 77 6m @ 6.0 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 61 63 2m @ 6.0 g/t		•		SEL	ECTIVE RC RE
RC-17-157 61 63 2m @ 1. g/t RC-17-159 43 48 5m @ 2.8 g/t RC-17-160 51 60 9m @ 2.7 g/t RC-17-161 96 99 3m @ 3.4 g/t RC-17-164 14 16 2m @ 1.1 g/t RC-17-165 67 69 2m @ 1.0 g/t RC-17-165 477 60 13m @ 2.9 g/t (CSH-12-44 twin, 14m @ 4.5g/t) inc. 53 59 6m @ 5.4 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 61 63 2m @ 6.0 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t RC-17-173 71 77 2m @ 8.6 g/t <	Hole		From	То	Au
RC-17-159 43 48 5m @ 2.8 g/t RC-17-160 51 60 9m @ 2.7 g/t RC-17-161 96 99 3m @ 3.4 g/t RC-17-164 14 16 2m @ 1.1 g/t RC-17-165 47 60 13m @ 2.9 g/t (CSH-12-44 twin, 14m @ 4.5g/t) inc. 53 59 6m @ 5.4 g/t (CSH-12-44 twin, 20m @ 2.8g/t) inc. 53 59 6m @ 5.4 g/t (CSH-12-44 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t (CSH-12-44 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 61 63 2m @ 6.0 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t RC-17-173 71 77 6m @ 4.0 g/t 102 103 1m @ 1.1 g/t RC-17-175 38 39 1m @ 1.1 g/t 1m @ 1.3 g/t 1m @ 24.2 g/	RC-17-156		34	35	1m @ 1.3 g/t
RC-17-160 51 60 9m @ 2.7 g/t RC-17-161 96 99 3m @ 3.4 g/t RC-17-164 14 16 2m @ 1.1 g/t RC-17-165 67 69 2m @ 1.0 g/t RC-17-165 47 60 13m @ 2.9 g/t (CSH-12-44 twin, 14m @ 4.5g/t) inc. 53 59 6m @ 5.4 g/t RC-17-166 68 85 17m @ 2.0 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t (CSH-12-40 twin, 20m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 71 77 6m @ 4.0 g/t RC-17-173 71 77 2m @ 8.6 g/t 38 39 1m @ 1.1 g/t RC-17-175 38 39 1m @ 1.3 g/t 1.1 g/t 1.1 g/t RC-17-176 102	RC-17-157		61	63	2m @ 1.1 g/t
RC-17-161 96 99 3m @ 3.4 g/t RC-17-164 14 16 2m @ 1.1 g/t RC-17-165 67 69 2m @ 1.0 g/t RC-17-165 47 60 13m @ 2.9 g/t (CSH-12-44 twin, 14m @ 4.5g/t) inc. 53 59 6m @ 5.4 g/t RC-17-166 68 85 17m @ 2.0 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t RC-17-171 94 95 1m @ 2.0 g/t RC-17-173 71 77 6m @ 4.0 g/t Inc. 75 77 2m @ 8.6 g/t RC-17-175 38 39 1m @ 1.1 g/t RC-17-176 102 103 1m @ 1.3 g/t RC-17-181 72 73 1m @ 24.2 g/t	RC-17-159		43	48	5m @ 2.8 g/t
RC-17-164 14 16 2 m @ 1.1 g/t RC-17-164 67 69 2 m @ 1.0 g/t RC-17-165 47 60 13m @ 2.9 g/t (CSH-12-44 twin, 14m @ 4.5g/t) inc. 53 59 6m @ 5.4 g/t RC-17-166 68 85 17m @ 2.0 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 61 63 2m @ 6.0 g/t (CSH-12-40 twin, 20m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t (CSH-17-171 94 95 1m @ 2.0 g/t 1m @ 2.0 g/t RC-17-173 71 77 6m @ 4.0 g/t 1m @ 2.0 g/t mic. 75 77 2m @ 8.6 g/t 1m @ 1.1 g/t RC-17-175 38 39 1m @ 1.1 g/t 1m @ 1.3 g/t RC-17-181 72 73 1m @ 24.2 g/t 1m @ 1.1 g/t	RC-17-160		51	60	9m @ 2.7 g/t
AC AC<	RC-17-161		96	99	3m @ 3.4 g/t
RC-17-165 47 60 13m @ 2.9 g/t (CSH-12-44 twin, 14m @ 4.5g/t) inc. 53 59 6m @ 5.4 g/t RC-17-166 68 85 17m @ 2.0 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t (CSH-12-40 twin, 20m @ 1.9g/t) inc. 82 83 1m @ 9.7 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t RC-17-171 94 95 1m @ 2.0 g/t 1m @ 2.0 g/t inc. 71 77 6m @ 4.0 g/t 1m @ 1.1 g/t RC-17-175 inc. 75 77 2m @ 8.6 g/t RC-17-176 102 103 1m @ 1.3 g/t RC-17-181 72 73 1m @ 24.2 g/t	RC-17-164		14	16	2m @ 1.1 g/t
(CSH-12-44 twin, 14m @ 4.5g/t) inc. 53 59 6m @ 5.4 g/t RC-17-166 68 85 17m @ 2.0 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t RC-17-167 58 85 27m @ 2.5 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t (CSH-17-171 94 95 1m @ 2.0 g/t 1m RC-17-173 71 77 6m @ 4.0 g/t inc. 75 77 2m @ 8.6 g/t RC-17-175 38 39 1m @ 1.1 g/t RC-17-176 102 103 1m @ 1.3 g/t			67	69	2m @ 1.0 g/t
RC-17-166 68 85 17m @ 2.0 g/t (CSH-12-40 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t RC-17-167 58 85 27m @ 2.5 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t (CSH-17-171 94 95 1m @ 2.0 g/t RC-17-173 71 77 6m @ 4.0 g/t inc. 75 77 2m @ 8.6 g/t RC-17-175 inc. 102 103 1m @ 1.3 g/t RC-17-181 72 73 1m @ 24.2 g/t	RC-17-165		47	60	13m @ 2.9 g/t
(CSH-12-40 twin, 20m @ 2.8g/t) inc. 82 83 1m @ 9.7 g/t RC-17-167 58 85 27m @ 2.5 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t RC-17-171 94 95 1m @ 2.0 g/t RC-17-173 71 77 6m @ 4.0 g/t inc. 75 77 2m @ 8.6 g/t RC-17-175 38 39 1m @ 1.1 g/t RC-17-176 102 103 1m @ 1.3 g/t	(CSH-12-44 twin, 14m @ 4.5g/t)	inc.	53	59	6m @ 5.4 g/t
RC-17-167 58 85 27m @ 2.5 g/t (CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t RC-17-171 94 95 1m @ 2.0 g/t RC-17-173 71 77 6m @ 4.0 g/t Inc. 75 77 2m @ 8.6 g/t RC-17-175 38 39 1m @ 1.1 g/t RC-17-176 102 103 1m @ 1.3 g/t	RC-17-166		68	85	17m @ 2.0 g/t
(CSH-14-104 twin, 29m @ 1.9g/t) inc. 61 63 2m @ 6.0 g/t RC-17-171 94 95 1m @ 2.0 g/t RC-17-173 71 77 6m @ 4.0 g/t inc. 75 77 2m @ 8.6 g/t RC-17-175 38 39 1m @ 1.1 g/t RC-17-176 102 103 1m @ 1.3 g/t RC-17-181 72 73 1m @ 24.2 g/t	(CSH-12-40 twin, 20m @ 2.8g/t)	inc.	82	83	1m @ 9.7 g/t
RC-17-171 94 95 1m@ 2.0 g/t RC-17-173 71 77 6m@ 4.0 g/t inc. 75 77 2m@ 8.6 g/t RC-17-175 38 39 1m@ 1.1 g/t RC-17-176 102 103 1m@ 1.3 g/t RC-17-181 72 73 1m@ 24.2 g/t	RC-17-167		58	85	27m @ 2.5 g/t
RC-17-173 71 77 6m @ 4.0 g/t inc. 75 77 2m @ 8.6 g/t RC-17-175 38 39 1m @ 1.1 g/t RC-17-176 102 103 1m @ 1.3 g/t RC-17-181 72 73 1m @ 24.2 g/t	(CSH-14-104 twin, 29m @ 1.9g/t)	inc.	61	63	2m @ 6.0 g/t
inc. 75 77 2m @ 8.6 g/t RC-17-175 38 39 1m @ 1.1 g/t RC-17-176 102 103 1m @ 1.3 g/t RC-17-181 72 73 1m @ 24.2 g/t	RC-17-171		94	95	1m @ 2.0 g/t
RC-17-175 38 39 1m @ 1.1 g/t RC-17-176 102 103 1m @ 1.3 g/t RC-17-181 72 73 1m @ 24.2 g/t	RC-17-173		71	77	6m @ 4.0 g/t
RC-17-176 102 103 1m@ 1.3 g/t RC-17-181 72 73 1m@ 24.2 g/t		inc.	75	77	2m @ 8.6 g/t
RC-17-181 72 73 1m @ 24.2 g/t	RC-17-175		38	39	1m @ 1.1 g/t
RC-17-181 72 73 1m @ 24.2 g/t	RC-17-176		102	103	1m @ 1.3 g/t
	RC-17-181		72	73	1m @ 24.2 g/t

ANALOGOUS DEPOSITS

DEPOSITIONAL ENVIRONMENT

Two billion years ago, a large continent lay near the South Pole, with a chain of lode gold deposits along its central mountain ridge. Gold accumulated in placer deposits down-slope, in alluvial fans, on beaches and in the near-shore marine environment. In modern times, these now include gold deposits at Tarkwa, Jacobina and Castelo de Sonhos.

