

TSX-V: DV U.S.: DOLLF

October 2013

Sampling 1025 Level of Torbrit Photo by Andrew Strain

FORWARD LOOKING INFORMATION

Certain of the statements and information herein constitute "forward-looking statements" or "forward-looking information. Any statements or information that express or involve discussions with respect to predictions, expectations, beliefs, plans, projections, objectives, assumptions or future events or performance (often, but not always, using words or phrases such as "expects", "anticipates", "believes", "plans", "estimates", "intends", "targets", "goals", "forecasts", "objectives", "potential" or variations thereof or stating that certain actions, events or results "may", "could", "would", "might" or "will" be taken, occur or be achieved, or the negative of any of these terms and similar expressions) are not statements of historical fact and may be forward-looking statements or information. Forward looking statements or information relate to, among other things: the Company's business objectives and plans.

Forward-looking statements or information are subject to a variety of known and unknown risks, uncertainties and other factors that could cause actual events or results to differ from those reflected in the forward-looking statements or information, including, without limitation, the need for additional capital by the Company through financings, and the risk that such funds may not be raised; the speculative nature of exploration and the stages of the Company's properties; the effect of changes in commodity prices; regulatory risks that development of the Company's material properties will not be acceptable for social, environmental or other reasons and the efforts and abilities of the senior management team. This list is not exhaustive of the factors that may affect any of the Company's forward-looking statements or information. Although the Company has attempted to identify important factors that could cause actual results to differ materially, there may be other factors that cause results not to be as anticipated, estimated, described or intended. Accordingly, readers should not place undue reliance on forward-looking statements or information.

The Company's forward-looking statements and information are based on the assumptions, beliefs, expectations and opinions of management as of the date hereof, and other than as required by applicable securities laws, the Company does not assume any obligation to update forward-looking statements and information if circumstances or management's assumptions, beliefs, expectations or opinions should change, or changes in any other events affecting such statements or information.

Paul McGuigan, P Geo, V.P. of Exploration has reviewed and approved the content contained in this presentation.

Historic Mining Camp for High-Grade Silver

Gold & Silver Deposits are clustered within a fault-bounded **Kitsault Rift** that focuses episodic intrusive, volcanic and hydrothermal activity. The Kitsault Rift is in the same setting as the rift hosting the **Eskay Creek deposit**.

Company exploration has identified two important riftrelated VMS strata:

- A thick, and extensive exhalite **DVT Horizon**, locally with very high-grade silver.
- A second, younger horizon that is analogous to the Eskay Creek Gold- & Silver-Rich VMS setting.

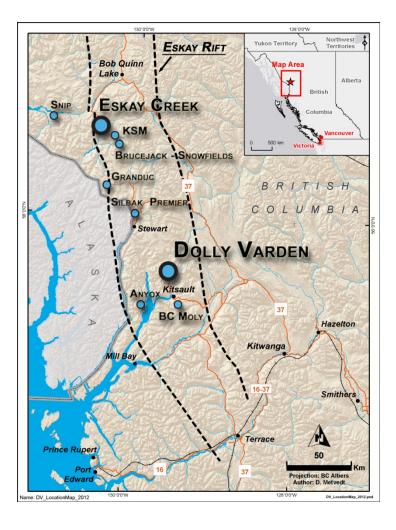
Dolly Varden Silver Corporation - TSX-V:DV Capital structure

DV.V	Sep	13, 2013
		0.35
1		0.25
Muh Mund	M	
	non non	MN -0.20
	han .	-0.15
© Yahoo!	al moved	-0.10
Jan	May	0.05 Sep
	Issued Common Shares	
As of Aug 27, 2013	Issued Common Shares	131,397,919
Options		
	9 \$0.25 (Jan 30, 2017)	
•	9 \$0.35 (Mar 1, 2017)	
	9 \$0.20 (Jun 4, 2017)	
1,150,000 @	9 \$0.18 (Mar 18, 2018)	
4,389,750 @	9 \$0.16 (Jul 26, 2018)	13,139,750
Warrants		
5.000.000 @	\$0.10 (Feb. 14, 2014)	
	\$0.20 (Dec. 28, 2014)	
•	\$0.18 (Mar. 15, 2015)	
	\$0.20 (Mar. 15, 2015)	6,826,550
.,,200 (2	, , , , , , , , , , , , , , , , , , ,	0,820,330
	Fully Diluted Shares	151,364,219
	Basic Market Cap \$0.19/share)	\$25 M

	Financing Histor	y
Sept 2012	20,000,000 common shares at \$0.16	\$3,200,000
Jan 2013	2,660,000 flow- through common shares \$0.16/ \$0.20	\$532,000
Mar 2013	10,310,000 common shares at \$0.18, 25,000 flow-through common at \$0.20	\$1,860,800
Apr 2013	15,064,700 shares at \$0.18	\$2,711,666

Major Shar	eholders
Management & Insiders	~10%
Hecla Mining	19.9%

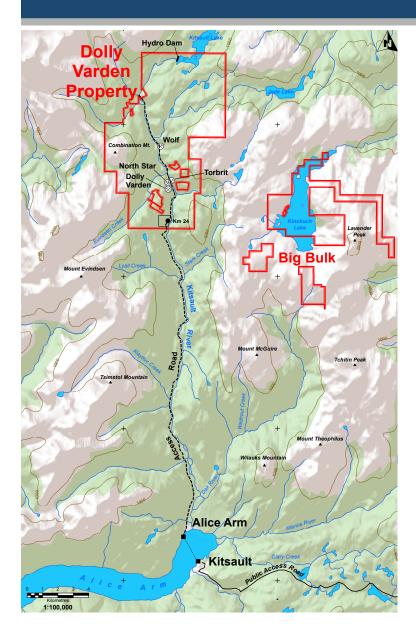
Highly Qualified, Multidisciplinary Team



Management	Directors	Technical Advisors
Chairman – John King Burns	Allen Ambrose, P.Geo	Ron Netolitzky
President & CEO – Ron F. Nichols, P.Eng	Allan Marter	Greg Hall
VP Exploration – Paul McGuigan, P. Geo	Rosie Moore, BS, MS.	Dr. Hans E. Madeisky
CFO – Keith Margetson, CA,CPA.	Ian Smith	
	George W. Heard, BSc, MBA, P. Eng	
	Y.B. Ian He, B.Eng, M.A.Sc., Ph.D.	

Experienced from greenfield and brownfield exploration through to development and operations.

Stewart Mining Camp Major Projects on a Regional Geologic Trend



- Snip Mine 1.1M oz Au historic production
- Dolly Varden Mine 20M oz Ag historic production
- Eskay Creek (Barrick) Historic Production 3.6M oz Au + 180M oz Ag
- Silback Premier (Ascot) Historic Production 2.2M oz Au + 44.2M oz Ag
- Brucejack (Pretium) P&P Reserves (13.9M oz Au + 40.6 M oz Ag) M&I Resource (25.9M oz Au + 51MM oz Ag)
- KSM (Seabridge Gold) P&P Reserves 38.2M oz Au, 9.9B lbs Cu, 191M oz Ag, 213M lbs Mo
- BC Moly (Avanti) Kitsault M&I Resource 505MM lbs Mo

Surrounded by world-class projects

Excellent infrastructure

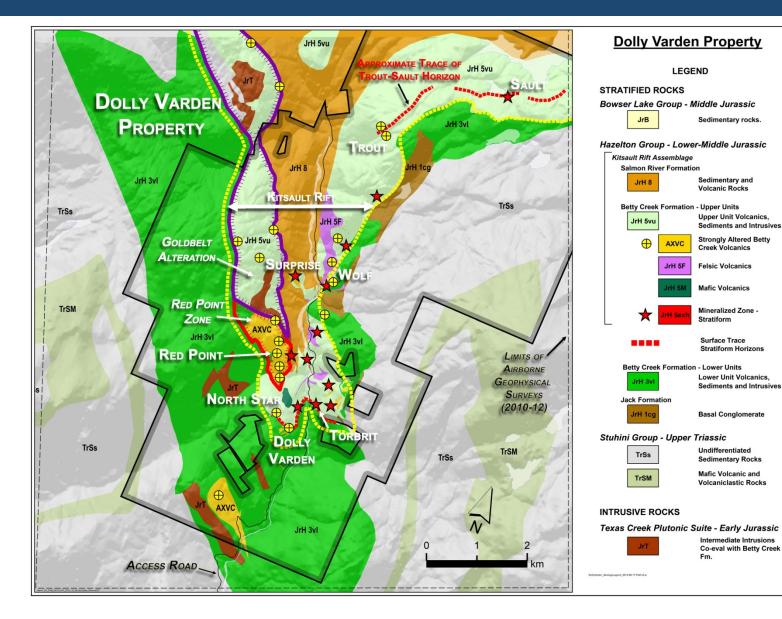
- 100% owned 8,799 Hectares
- Property is 26 Km from tidewater at Alice Arm - all weather road access
- Camp and logistics in Alice Arm
- 30 Km from power grid (Kitsault)
- Access to rail and deep water shipping (Kitsault)
- 7 Km of existing underground development
- Native land claims settled-Nisga'a
- Year round operations planned

Torbrit Mine: Excellent Infrastructure and Prior Development

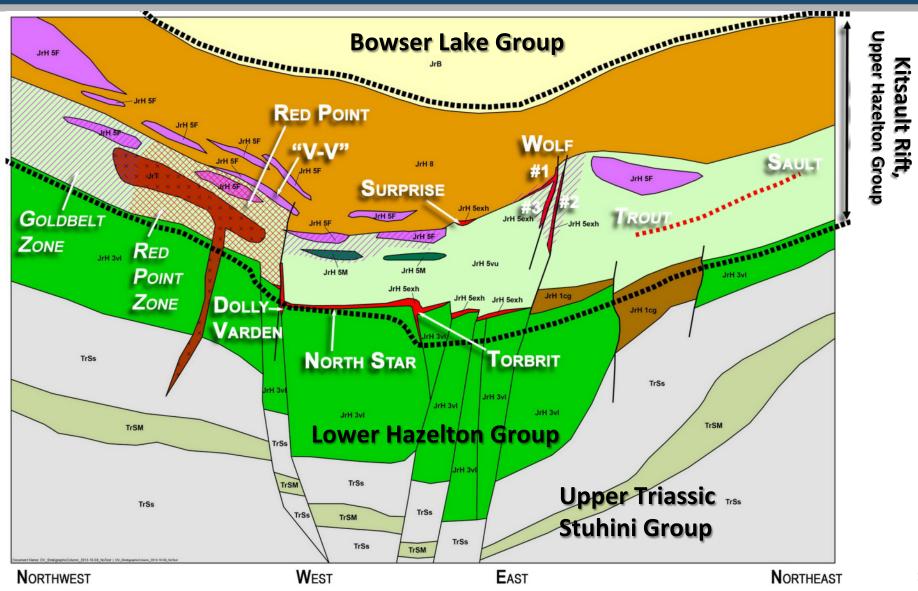
20 M oz Ag Historic Production and Extensive Exploration

Prior Exploration:

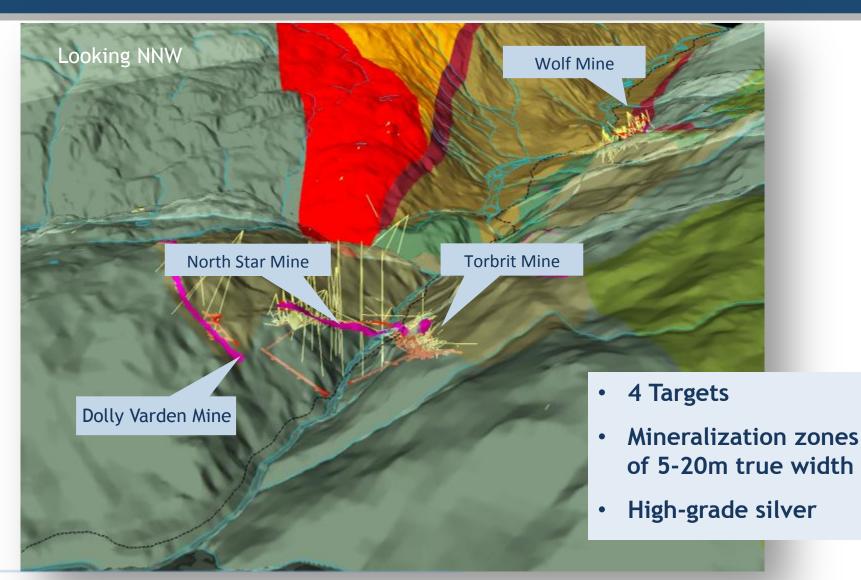
- 631 diamond drill holes
- 44,090 meters of drilling


• 7 km underground development

• 1980's Engineering studies on mine, mill, and tailings design


- **1909** Dolly Varden deposit discovered.
- 1920s Dolly Varden produced 1.5 M oz. Ag (35.7 oz/ton)
- **1950s** Torbrit mine produced 18.5 M oz Ag (13.58 oz/ton)
- **1980-2011** Fred Christiansen acquires and explores property and old workings (1980s). Estate sells in 2011.
- 2011 DV completes 4,600 meters 21 diamond drill holes on Wolf deposit: 19.65m grading 388 g/t (11.31 oz/ton) Ag
- 2012 (Feb 14) DV acquires Property for \$2.5 million (Acquisition cost of \$0.20 per oz. of Silver) and amalgamates with Twin Glacier to list as tier 1 issuer on TSX-V.
- **2012** Dolly Varden mine drilling 1,728 meters (6 holes) and Torbrit Mine rehabilitation, underground sampling, ZTEM.
- 2013 Completes 3,000 meter drill program (14 holes) at Torbrit target (awaiting assays)

Property Geology of Dolly Varden with Major Deposits and Alteration


Schematic Time-Stratigraphic Diagram with Major Deposits and Alteration

11

Validation and expansion of historic mineral resources

potential for mineral resource upgrade and expansion

Historic mineral resource estimate* 5.7M oz. Ag Proven + Probable 8.8M oz. Ag Possible

The qualified person has not done sufficient work to classify the Historical Estimates as current mineral Resources or Reserves. Furthermore, the issuer is not treating these Estimates as current Mineral Resources or Mineral Reserves. *Derry Michener Booth & Wahl (1986) See additional details on following page

All cut off grades 171 g/t silver

* Derry Michener Booth & Wahl (1986) See Note 4 and additional disclosure on Pg 14

Geology and Mineral Exploration of the Dolly Varden Property, British Columbia, Canada Sept. 5, 2011, as revised. By Terry Garrow - Filed on SEDAR. ¹³

Notes on Historic mineral resource estimates

Comments:

a: Skerl (1964) and Mann (1974) Dolly Varden Mine staff. Remaining resource blocks are in proximity to mined out stopes and downplunge extensions of mined out areas.

b: Thompson & Pearson (1981) Derry Michener & Booth. Minimum mining width of 5 ft. No prior mining.

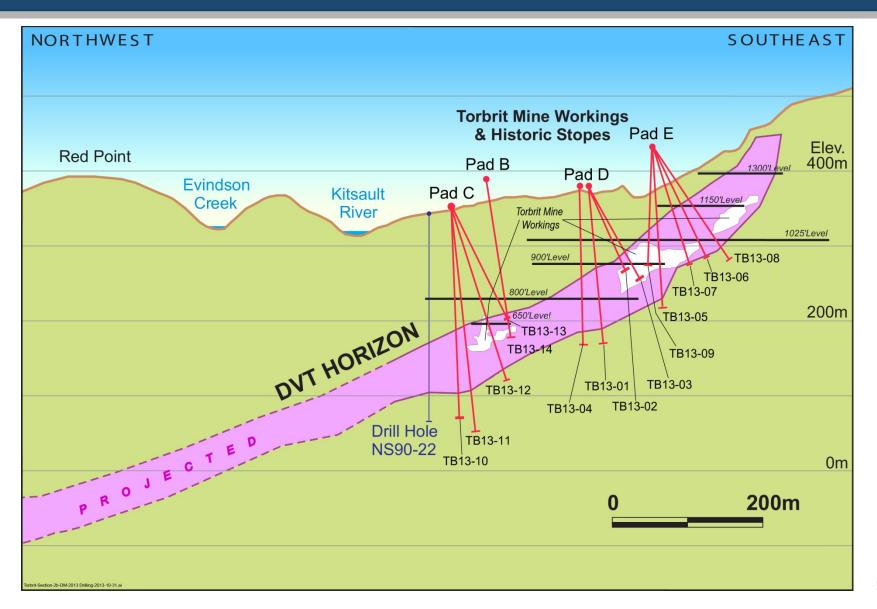
c: Leigh & Thompson (1983) Derry Michener & Booth. Comprised of 18 zones. Most zones are in the hanging wall of the glory hole and mined out stopes of the 1959 operation.

d: Thompson & Pearson (1981) Derry Michener & Booth. No prior mining. Tested by two levels of underground adits.

e: Thompson & Pearson (1981) Derry Michener & Booth. No prior mining. Tested by three levels of undergound adits.

f: Thompson & Pearson (1981) Derry Michener & Booth. No prior mining.

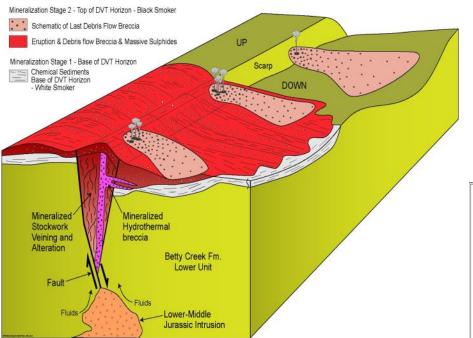
Note 1: This resource estimate was prepared from incomplete old plans and sections, considerable verification drilling is required prior to placing reliance on this information.


Note 2: Historic Resource Classifications used in mineral resource estimates at the Dolly Varden deposits termed blocks with closely spaced drilling and bulk sampling data "Proven and Probable Reserves" and made allowances for mining operations and dilution. However, significant additional technical work is required. In the current terminology these blocks would be termed Measured and Indicated Mineral Resources, however, for the purposes of this Technical Report they are to be considered Geological Information only and subject to verification by drilling and sampling, prior to reclassification.

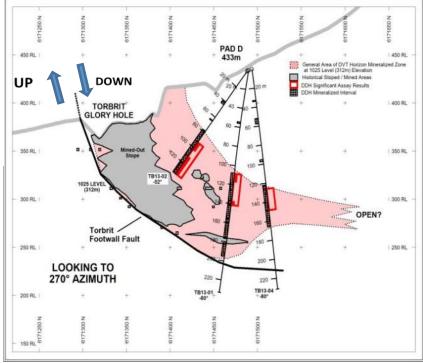
Note 3: Historic Resource Classifications used in mineral resource estimates at the Dolly Varden deposits termed blocks with more widely spaced drilling "Possible Reserves". In the case of Torbrit, Thompson and Pearson (1981) reduced the confidence to Possible because the closely spaced drilling data must be subject to considerable check drilling. In the current terminology these blocks would be termed Inferred Mineral Resources, however, for the purposes of this Technical Report they are to be considered Geological Information only and subject to verification by drilling and sampling, prior to reclassification.

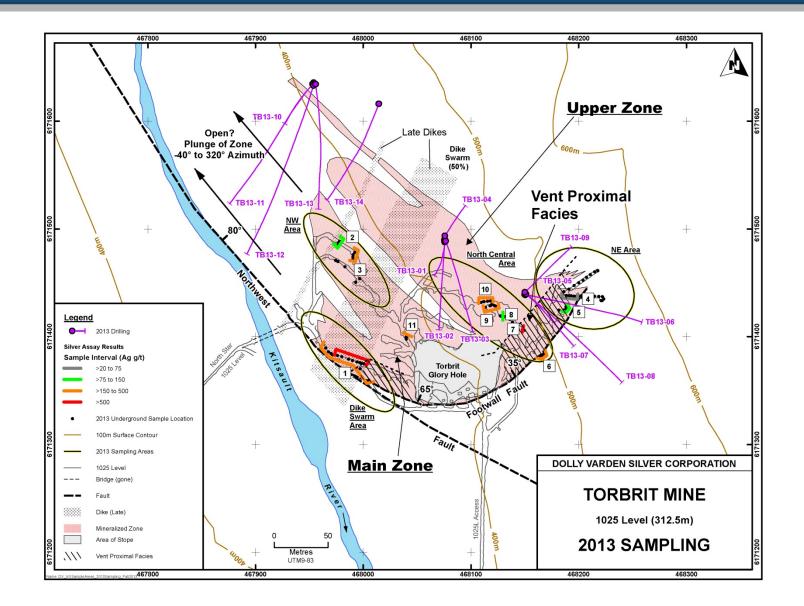
Note 4: The Qualified Person has not done sufficient work to classify the Historical Estimates as current Mineral Resources or Mineral Reserves. Furthermore, the Issuer is not treating these Historical Estimates as current Mineral Resources or Mineral Reserves.

*Notes from Geology and Mineral Exploration of the Dolly Varden Property, British Columbia, Canada Sept. 5, 2011, as revised. By Terry Garrow - Filed on SEDAR


Drill Plan With Conceptual Model

Dolly Varden Camp

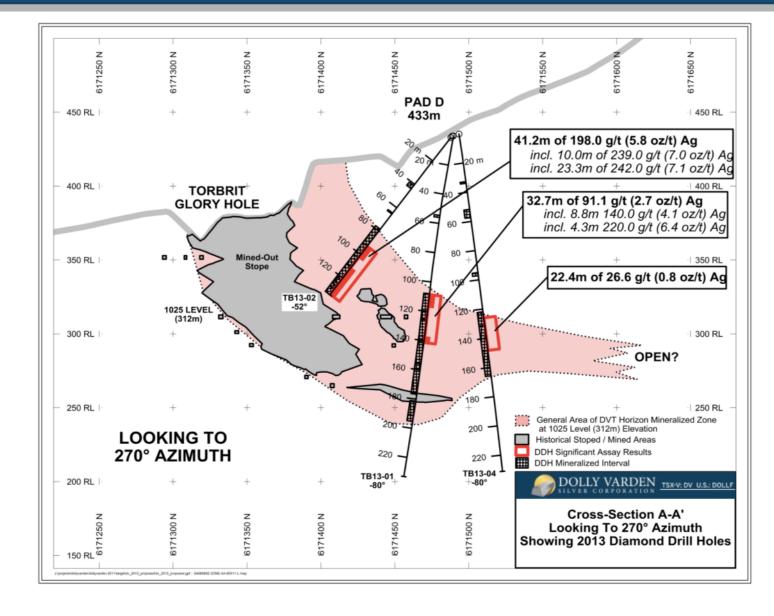

DVT HORIZON


CONCEPTUAL MODEL Rift-related faulting is a locus for mineralizing fluids

Torbrit footwall fault was measured in 2013: normal displacement + controls mineralization

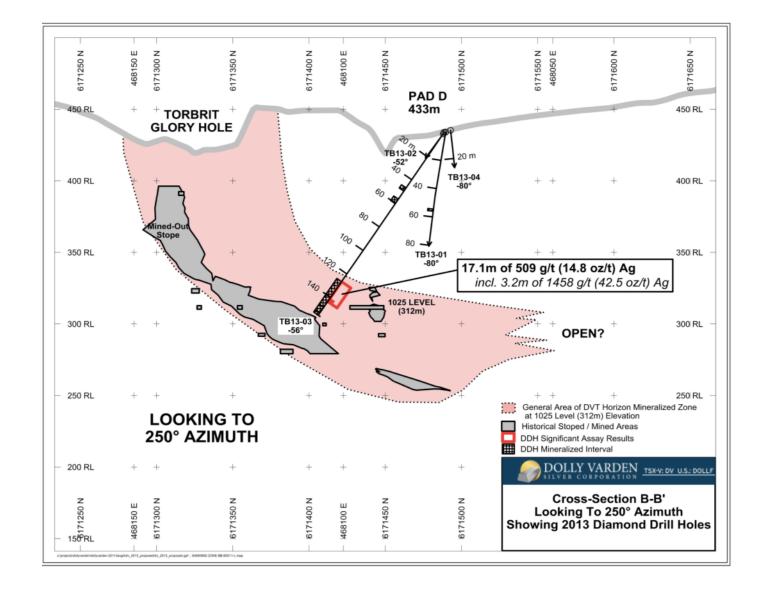
RESULTS 2013 Drilling at Torbrit

Torbrit: 2013 Sampling


17

Torbrit: 2013 Underground Sampling Results

2013 TO RERIT UNDERGROUND SAMPLING RESULTS									
Site #	Sampling Area	True Thickness (m)	Ag (g/t)	Ag (oz/ton)	РЬ (%)	Zn (%)	Description		
1	NW Area	39.9**	141.4	4.1	0.36	0.32	Dike Swarm + DVT layer, barite-silica		
	including	24**	297.0	8.7	0.25	0.24	Dike Gwaini - Do'r layer, bantesinea		
2	NW Area - NE end of stope	6.2	150.0	4.4	0.15	0.21	DVT Layer, barite-carbonate		
3	NW Area - Middle of stope	8.8	256.6	7.5	0.43	0.23	D) (T. Lauren allien aufabildan		
3	including	3.2	371.8	10.8	0.78	0.14	DVT Layer, silica-sulphides		
4	NW Area	9.2	69.9	2.0	0.28	0.08	DVT Layer mixed with volcanics		
5	NW Area	5.7	189.9	5.5	0.98	0.8	DATE Lange Augusta		
	including	2.7	315.2	9.2	0.45	0.03	DVT Layer, breccia		
6	Central Area	3.5*	245.0	7.1	0.65	0.02	DVT Layer, barite-silica		
7	Central Area	4.0*	891.6	26.0	0.77	0.06	DVT Layer, barite-silica		
8	Central Area	7.2*	172.0	5.0	1.1	2.0	DV/T Level and the banded base of a		
9. B	including	4.1*	223.5	6.5	1.7	3.0	DVT Layer, massive to banded breccia		
9	Central Area	13.9**	278.9	8.1	1.14	1.5	Lapilli Tuff, fractures with carbon <i>a</i> te & fine sulphides		
10	Central Area	7.2*	308.9	9.0	1.57	1.12	DVT Layer, breccia and banded breccia		
11	NW Area – Surface	2.9*	246.7	7.2	0.35	0.51	DVT Layer, barite-silica		
* - p arti	* - partial true thickness, limited by sampling exposure; ** - partial sample length and true thickness unknown								

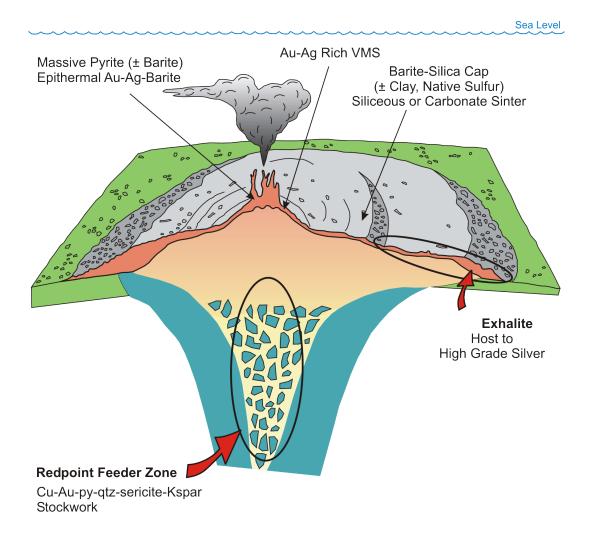


Torbrit: 2013 Drill Cross Section A

Torbrit: 2013 Drill Cross Section B

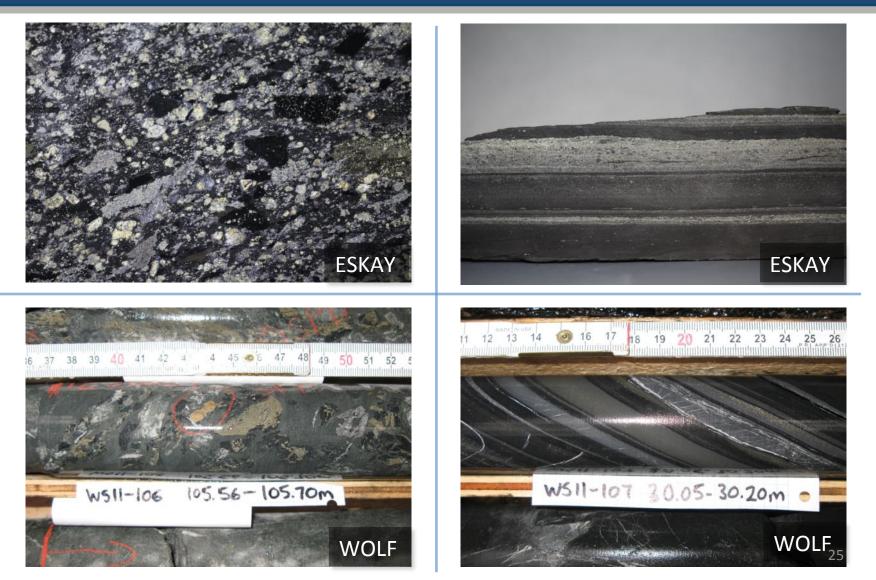
17.1m Core Interval Grading 509 g/t Ag

	TORI	BRIT MINE:	2013 DIAMOND	DRILL RES		Y	
DDH #	From	То	Interval (m)*	Ag (g/t)	Ag (oz/ton)	Pb (%)	Zn (%)
TB13-01	108.7	141.4	32.7	91.1	2.7	0.48	0.63
including	108.7	117.5	8.8	140.0	4.1	0.55	1.10
including	137.0	141.4	4.3	220.0	6.4	0.26	0.26
TB13-02	92.8	134.0	41.2	198.0	5.8	0.56	0.41
including	92.8	102.8	10.0	239.0	7.0	1.26	1.12
including	110.7	134.0	23.3	242.0	7.1	0.43	0.21
TB13-03	126.5	143.6	17.1	509.0	14.8	0.73	1.20
including	140.4	143.6	3.2	1458.0	42.5	0.77	1.74
TB13-04	126.0	148.4	22.4	26.6	0.8	0.34	0.93
*Drill core interval: The true width has not been estimated							


Torbrit 2013: Core with Visible Silver

VMS Feeder Zone - Eskay Creek Analogue

Modified from Hannington et al, 1996


Wolf Mine: 2011 Drill Results

Hole	From	То	Length	Ag	Ag	Zn	Pb
	(m)	(m)	(m)	(g/t)	(oz/s.t.)	(ppm)	(ppm)
		Conformable	mineralization	northwest of No	. 2 Zone		•
WS11-106	82.14	82.99	0.85	675	19.69	823	2412
WS11-111	54.06	59.75	5.69	207	6.04	4595	4018
WS11-112	55.26	72.4	17.14	99	2.89	2617	2599
WS11-113	46.85	65.05	18.20	95	2.77	2651	7692
Including	49.28	52.82	3.54	364	10.62	4077	15602
Including	50.82	51.82	1.00	717	20.91	10212	9217
WS11-115	35.35	46.07	10.72	293	8.55	9718	9772
Including	35.35	40.80	5.45	384	11.20	16952	15737
		Mineraliz	ation at sedime	nt - volcanic con	tact		
WS11-104	38.85	40.80	1.95	401	11.70	478	1767
including	38.85	39.27	0.42	992	28.93	335	6950
WS11-104	52.66	53.80	1.14	254	7.41	1070	1904
WS11-105	46.61	47.5	0.89	379	11.05	981	4048

Debris Flow Breccia Textures in Salmon River Fm.

Conclusion

Highly qualified team

• Key strategic Partner – Hecla

Geologic Setting

- VMS System is well documented and long lived
- Numerous potential targets
- Historic resources
- Highly prospective VMS targets

Infrastructure

- Access to existing infrastructure (tidewater, power, road)
- Past producing all season production

Contact Information

Dolly Varden Silver Corporation Suite 910 – 355 Burrard Street Vancouver, British Columbia, Canada, V6C 2G8 Tel: 778-383-3083 Toll free: 1-855-381-3530 TSX-V:DV

www.dollyvardensilver.com

Ron F. Nichols President, CEO & Director Direct line: 604-398-4345

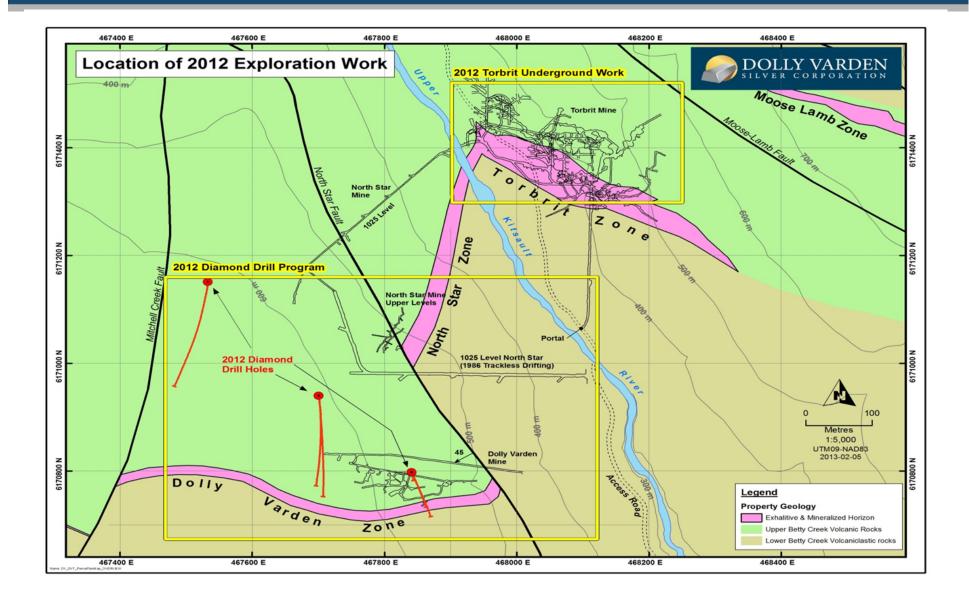
Investor Relations Vanguard Solutions Tel: 604 608 0824 / 866 801 0779 Email: mgagel@vanguardsolutions.ca

Appendix

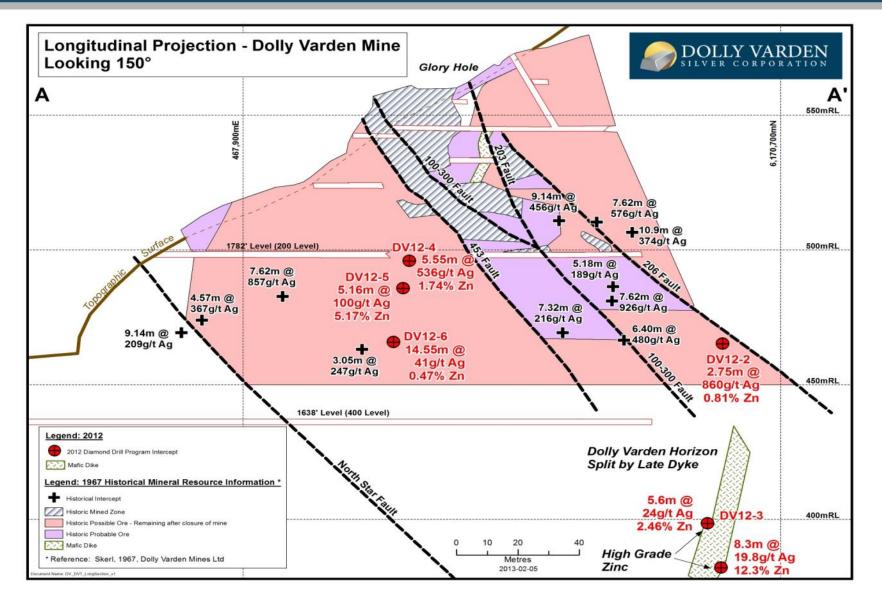
2012 Drill & Exploration Program

*

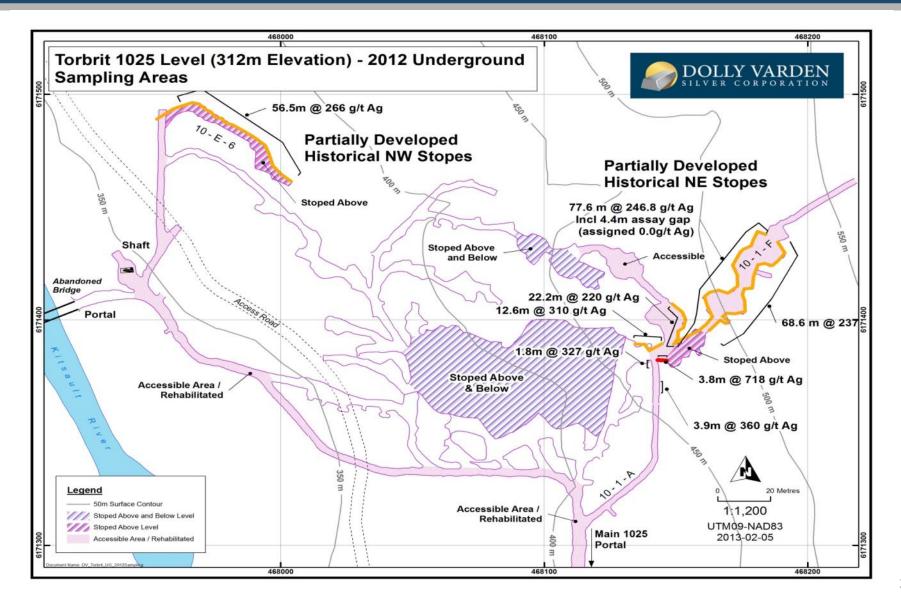
Torbrit Mine Rehabilitation


*

- Underground access safely achieved for majority of 1025 level and upper sublevels
- Historical survey control re-established and transformed to 2012 survey base
- Historical underground development & stoping data assembled and 3D
 modeled employing the 2012 survey base guide to confirmation drilling


Torbrit Mine Exploration & Permitting

- Underground mapping and sampling done in selected areas
- Surface diamond drill pads constructed for use in pending definition drilling phase
- Environmental water sampling conducted with favorable good quality water discharge results on Torbrit underground
- Rehabilitation of 1025 level and favorable water sampling results will allow for
 Permitting of underground development and diamond drilling


*2012 Exploration Areas - Dolly Varden to Torbrit

* 2012 Diamond Drilling - Dolly Varden area

Torbrit - 1025 Level - 2012 Sample Results

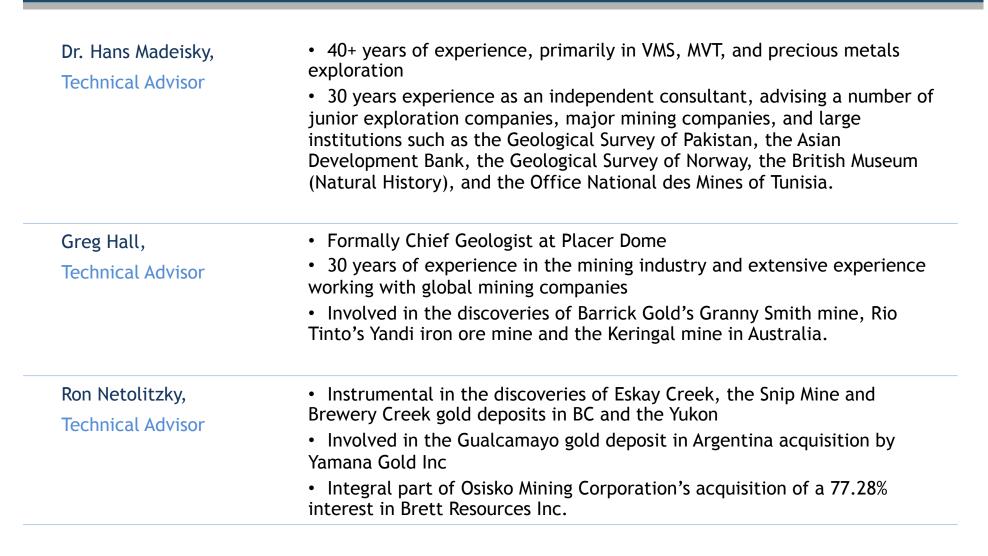
Dolly Varden Team Biographies

DETAILED TEAM BIOGRAPHIES

Experienced Management

John King Burns Chairman & Director	 Former CFO of Drexel Burnham Lambert Commodity Group Former managing director of Barclays Metals Group 30+ years of extensive capital markets and resource sector experience
Ron F. Nichols, P. Eng. President and CEO	 30+ years (20 years with Cominco) of exploration and development experience including Valley Copper and Snip Mines in BC Recently involved in re-start of Ag-Cu-Pb-Zn La Negra Mine, Mexico and Shafter Silver Mine, Texas
Paul J. McGuigan, P. Geo. VP Exploration	 35+ years of experience (11 yrs with Esso Resources) in mineral exploration and mining operations, incl. Granduc VMS restart & Tusequah Chief new VMS deposit discovery in the NW BC region. Principal of Cambria Geosciences Inc., Active in BC since 1974
Keith Margetson, CA, CPA. CFO	 15+ years experience with public companies, both as an auditor and in providing other professional services Qualified as a chartered accountant in 1975 Operated own accounting firm since 1992
Connie Norman, Corporate Secretary	 Over 13 years' experience in corporate governance, 30+ years in corporate administration Experience with provincial governments, large corporations and small- to mid-cap public companies. Member of the Canadian Society of Corporate Secretaries (CSCS).

Experienced Board of Directors



Rosie Moore, BS, MS.	 Former partner/analyst researching exploration equity investments globally for Geologic Resource Partners (Geologic)
Director	 30-year career. Corporate management roles: Diamond Fields Resources, Pan American Silver, Bear Creek Mining) and investment/capital markets (analyst at Yorkton Securities and Geologic. Director Corazon Gold, and Continental Gold. CEO/director of Geoinformatics Exploration
Ian B. Smith, Director	 45 years' experience in corporate, operations, and project management and consulting within the international base and precious metals industries Previously President and CEO of bcMetals Corp. & Yellowhead Mining Inc., taking its Cu-Au-Ag Harper Creek Project from an exploration property to a development-stage project (70,000t/d) in a period of less than two years
George W. Heard, BSc, MBA, P.Eng. Director	 35 years' experience in the mining industry, involved in all aspects. Managed projects in Africa, Indonesia, Brazil, Mexico, Canada and the US Development of \$600 million coal mine JV with RTZ and BP in Indonesia. With BHP Billiton - development and operation of 3 large surface mines (USA)

Experienced Board of Directors

Technical Advisory Committee

